Dynamic Programming divides the original problem into subproblems, and then complete the whole task by recursively conquering these subproblems. The key idea of DP, and of reinforcement learning generally, is the use of value functions to organize and structure the search for good policies. It assumes the full knowledge of the environment: someone tells us the state space, action space, transition struction, the reward structure, discounted factor...

We start with policy evaluation: given the MDP and an arbitary Policy π, we use Bellman Equation to recursively calculate the State-Value function:

And the policy evaluation algorithm is given by following:

The stop criteria is only very small change for the value state function.

The example is a  GridWorld puzzle, the task is to reach grey cell with most reward. The policy for the possible actions (up,down,left,right) are equivalent, all 25%.

Like a random walk, after calculation, we got :

Dynamic Programming and Policy Evaluation的更多相关文章

  1. 强化学习三:Dynamic Programming

    1,Introduction 1.1 What is Dynamic Programming? Dynamic:某个问题是由序列化状态组成,状态step-by-step的改变,从而可以step-by- ...

  2. Monte Carlo Policy Evaluation

    Model-Based and Model-Free In the previous several posts, we mainly talked about Model-Based Reinfor ...

  3. Ⅲ Dynamic Programming

    Dictum:  A man who is willing to be a slave, who does not know the power of freedom. -- Beck 动态规划(Dy ...

  4. 动态规划 Dynamic Programming

    March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...

  5. Dynamic Programming

    We began our study of algorithmic techniques with greedy algorithms, which in some sense form the mo ...

  6. HDU 4223 Dynamic Programming?(最小连续子序列和的绝对值O(NlogN))

    传送门 Description Dynamic Programming, short for DP, is the favorite of iSea. It is a method for solvi ...

  7. hdu 4223 Dynamic Programming?

    Dynamic Programming? Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Oth ...

  8. XACML-条件评估(Condition evaluation),规则评估(Rule evaluation),策略评估(Policy evaluation),策略集评估(PolicySet evaluation)

    本文由@呆代待殆原创,转载请注明出处. 一.条件评估(Condition evaluation) <Condition>元素缺失时或评估结果为真时,条件值为True. <Condit ...

  9. 算法导论学习-Dynamic Programming

    转载自:http://blog.csdn.net/speedme/article/details/24231197 1. 什么是动态规划 ------------------------------- ...

随机推荐

  1. socket参数的详解

    socket参数的详解 socket.socket(family=AF_INET,type=SOCK_STREAM,proto=0,fileno=None) 创建socket对象的参数说明: fami ...

  2. Linux学习--第七天--用户和用户组

    用户和用户组 usermod -a -G groupname username // 将已有用户添加到已有用户组 /etc/passwd michael:x:500:500:CentOS:/home/ ...

  3. GUI学习之二十一——QSlider、QScroll、QDial学习总结

    上一章我们学习了QAbstractSlider的用法,在讲功能的时候我们是借助了它的子类QSlider来实现的,今天来学习一下它的三个子类——QSlider.QScroll和QDial. 一.QSli ...

  4. bzoj4129 Haruna’s Breakfast 树上带修莫队+分块

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4129 题解 考虑没有修改的序列上的版本应该怎么做: 弱化的题目应该是这样的: 给定一个序列,每 ...

  5. 【Luogu4221】[WC2018] 州区划分

    题目链接 题目描述 略 Sol 一个州合法就是州内点形成的子图中 不存在欧拉回路(一个点也算欧拉回路). 这个东西显然就状压 dp 一下: 设 \(f[S]\) 表示当前考虑了 \(S\) 这个集合内 ...

  6. man gzip

    GZIP(1)                                                                GZIP(1) NAME/名称       gzip, g ...

  7. HBase过滤器(转载)

    HBase为筛选数据提供了一组过滤器,通过这个过滤器可以在HBase中的数据的多个维度(行,列,数据版本)上进行对数据的筛选操作,也就是说过滤器最终能够筛选的数据能够细化到具体的一个存储单元格上(由行 ...

  8. c++ printf和cout的性能

    今天做了一道编程题,仔细检查了算法并没有错误,但是结果显示时间超时,但仍有80%的案例通过了,很奇怪. 通过将cin换成scanf,cout换成printf结果AC,实验发现二者性能差了很多,在输出1 ...

  9. AngualJS-leaflet之视图等级缩放

    在http://tombatossals.github.io/angular-leaflet-directive/#!/examples/events 中的则是zoomlevelschange,然后识 ...

  10. 20191213用Python实现replace方法

    def myReplace(s,sub, dest, times =None): #如果times是None,替换的次数是s.count(sub) if times == None: times = ...