from http://m.blog.csdn.net/shengshengwang/article/details/75235860

1. RNN结构

解析:

(1)one to one表示单输入单输出网络。这里的但输入并非表示网络的输入向量长度为1,而是指数据的长度是确定

的。比如输入数据可以是一个固定类型的数,可以是一个固定长度的向量,或是一个固定大小的图片。同理,模型输

出规模也是确定的。传统神经网络和CNN都可以理解为是这种形式的结构。

(2)one to many表示定长输入变长输出的网络结构。以单词释义问题为例,输入的单个的英文单词he,输出将是一

段单词序列"that male one who is neither speaker nor hearer"。

(3)many to one表示输入为变长序列、输出为固定长度的模型。文本情感分析问题就是这一类型中典型的场景,网

络模型要根据一段文本,给出是否为积极情绪或消极情绪的概率判断。

(4)many to many第一种结构属于Encoder-Decoder框架,它的特点是输入序列数据经过编码器网络得到内部表示

后,再基于这个表示通过解码器网络生成新的序列数据。输入和输出都是变长数据,而且两者的长度可以不同。这一

类型的典型场景是机器翻译。比如使用RNN进行中英文翻译,网络输入为一段中文文本,输出为对应英文翻译结果。

(5)many to many第二种结构属于输入和输出的元素完全一一对应,虽然输入数据和输出数据的规模都是不定的,

但对于每一个输入,都有对应输出,即输入和输出数据长度是一致的。文本序列标注问题就是这样一类问题,可以使

用RNN对给定文本中的每一个单词进行词性标注。

2. tf.stack和tf.unstack

解析:

(1)tf.stack

stack(values, axis=0, name='stack')。假如'x'为[1, 4],'y'为[2, 5],'z'为[3, 6],那么stack([x, y, z]) => [[1, 4], [2, 5], [3,

6]],stack([x, y, z], axis=1) => [[1, 2, 3], [4, 5, 6]]。tf.stack([x, y, z]) = np.asarray([x, y, z])。

(2)tf.unstack

unstack(value, num=None, axis=0, name='unstack')。tf.unstack(x, n) = list(x)。

举个例子,如下所示:

import tensorflow as tf

a = tf.constant([1,2,3])
b = tf.constant([4,5,6])
c = tf.stack([a,b],axis=1)
d = tf.unstack(c,axis=0)
e = tf.unstack(c,axis=1)
print(c.get_shape())
with tf.Session() as sess:
print(sess.run(c))
print(sess.run(d))
print(sess.run(e))

结果输出,如下所示:

[[1 4][2 5][3 6]]

[array([1, 4], dtype=int32), array([2, 5], dtype=int32), array([3, 6], dtype=int32)]

[array([1, 2, 3], dtype=int32), array([4, 5, 6], dtype=int32)]

3. tf.split

解析:split(value, num_or_size_splits, axis=0, num=None, name='split')。假设value的shape为[5, 30],如下所示:

(1)如果split0, split1, split2 = tf.split(value, [4, 15, 11], 1),那么tf.shape(split0) ==> [5, 4];tf.shape(split1) ==> [5,

15];tf.shape(split2) ==> [5, 11]。

(2)如果split0, split1, split2 = tf.split(value, num_or_size_splits=3, axis=1),那么tf.shape(split0) ==> [5, 10]。

举个例子,如下所示:

import tensorflow as tf

A = [[1, 2, 3], [4, 5, 6]]
x0 = tf.split(A, num_or_size_splits=3, axis=1)
x1 = tf.unstack(A, num=3, axis=1)
x2 = tf.split(A, num_or_size_splits=2, axis=0)
x3 = tf.unstack(A, num=2, axis=0)
with tf.Session() as sess:
print(sess.run(x0))
print(sess.run(x1))
print(sess.run(x2))
print(sess.run(x3))

结果输出,如下所示:

[array([[1],[4]]), array([[2],[5]]), array([[3],[6]])]

[array([1, 4]), array([2, 5]), array([3, 6])]

[array([[1, 2, 3]]), array([[4, 5, 6]])]

[array([1, 2, 3]), array([4, 5, 6])]

说明:axis=0表示按行操作,axis=1表示按列操作。

4. tf.nn.rnn_cell.BasicLSTMCell和tf.contrib.rnn.BasicLSTMCell

5. state_is_tuple

解析:如果state_is_tuple=True,那么state是元组形式,state=(c,h)。如果state_is_tuple=False,那么state是一个由

c和h拼接起来的张量,state=tf.concat(1,[c,h])。

6. tf.subtract

解析:subtract(x, y, name=None),如下所示:

(1)x: A Tensor. Must be one of the following types: half, float32, float64, int32, int64, complex64, complex128.

(2)y: A Tensor. Must have the same type as x.

(3)name: A name for the operation (optional).

7. tf.multiply和tf.matmul区别

解析:

(1)tf.multiply是点乘,即Returns x * y element-wise.

(2)tf.matmul是矩阵乘法,即Multiplies matrix a by matrix b, producing a * b.

8. tf.contrib.layers.xavier_initializer

解析:xavier_initializer(uniform=True, seed=None, dtype=tf.float32):An initializer for a weight matrix.

(1)uniform: Whether to use uniform or normal distributed random initialization.

(2)seed: A Python integer. Used to create random seeds. See tf.set_random_seed for behavior.

(3)dtype: The data type. Only floating point types are supported.

9. tf.concat

解析:concat(values, axis, name='concat')。假设t1 = [[1, 2, 3], [4, 5, 6]],t2 = [[7, 8, 9], [10, 11, 12]],那么

tf.concat([t1, t2], 0) ==> [[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]],tf.concat([t1, t2], 1) ==> [[1, 2, 3, 7, 8, 9], [4, 5, 6,

10, 11, 12]]。

10. dynamic_rnn与static_rnn [1]

解析:可以分别静态和动态构建RNN模型,如下所示:

(1)rnn_outputs, final_state = tf.nn.static_rnn(cell, rnn_inputs, initial_state=init_state)

(2)rnn_outputs, final_state = tf.nn.dynamic_rnn(cell, rnn_inputs, initial_state=init_state)

两者的区别,如下所示:

(1)使用static_rnn时,输入为一个列表,len(list)=num_step,list[0].shape=[batch_size, input_feature],输出为一

个列表,len(list)=num_step,list[0].shape=[batch_size, num_hidden]。

(2)使用dynamic_rnn时,输入为[batch_size, num_step, input_feature]的三维Tensor,输出为[batch_size,

num_step, num_hidden]的三维Tensor。

说明:dynamic_rnn可以让不同迭代传入的batch是长度不同的数据,但同一次迭代一个batch内部的所有数据长度是

固定的。但是,static_rnn不能这样,它要求每一时刻传入的数据为[batch_size, max_seq],并且在每次迭代过程中都

保持不变。

11. tf.get_default_graph和tf.reset_default_graph

解析:

(1)tf.get_default_graph():返回返回当前线程的默认图。

(2)tf.reset_default_graph():清除默认图的堆栈,并设置全局图为默认图。

12. 双曲正切函数(tanh)

解析:

说明:tanh值域的范围为(-1,1)。

13. TensorFlow中的常亮、序列、随机数

解析:

(1)tf.ones([2, 3], int32) ==> [[1, 1, 1], [1, 1, 1]]

(2)tf.zeros([2, 3], int32) ==> [[0, 0, 0], [0, 0, 0]]

(3)假设tensor为[[1, 2, 3], [4, 5, 6]],那么tf.ones_like(tensor) ==> [[1, 1, 1], [1, 1, 1]]

(4)假设tensor为[[1, 2, 3], [4, 5, 6]],那么tf.zeros_like(tensor) ==> [[0, 0, 0], [0, 0, 0]]

(5)tf.fill([2, 3], 9) ==> [[9, 9, 9], [9, 9, 9]]

(6)tf.constant(-1.0, shape=[2, 3]) => [[-1. -1. -1.] [-1. -1. -1.]

(7)tf.linspace(10.0, 12.0, 3, name="linspace") => [ 10.0 11.0 12.0]

(8)tf.range(start,limit=None,delta=1,name='range'):返回一个tensor等差数列,该tensor中的数值在start到limit之

间,不包括limit,delta是等差数列的差值。

(9)tf.random_normal(shape,mean=0.0,stddev=1.0,dtype=tf.float32,seed=None,name=None):返回一个tensor其

中的元素的值服从正态分布。

(10)tf.truncated_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None):返回一个

tensor其中的元素服从截断正态分布。

(11)tf.random_uniform(shape,minval=0,maxval=None,dtype=tf.float32,seed=None,name=None):返回一个形状

为shape的tensor,其中的元素服从minval和maxval之间的均匀分布。

(12)tf.random_shuffle(value,seed=None,name=None):对value(是一个tensor)的第一维进行随机化。比如,

[[1,2], [2,3],[3,4]] ==> [[2,3], [1,2], [3,4]]。

(13)tf.set_random_seed(seed):设置产生随机数的种子。

14. softmax(logits, dim=-1, name=None)

解析:

(1)logits: A non-empty Tensor. Must be one of the following types: half, float32, float64.

(2)dim: The dimension softmax would be performed on. The default is -1 which indicates the last dimension.

(3)name: A name for the operation (optional).

15. tf.shape(x)和x.get_shape()区别

解析:

(1)都可以得到tensor x的尺寸。

(2)tf.shape()中x数据类型可以是tensor,list,array,而x.get_shape()中x的数据类型只能是tensor,且返回的是一

个元组。

16. tf.slice

解析:slice(input_, begin, size, name=None):Extracts a slice from a tensor.

假设input为[[[1, 1, 1], [2, 2, 2]], [[3, 3, 3], [4, 4, 4]], [[5, 5, 5], [6, 6, 6]]],如下所示:

(1)tf.slice(input, [1, 0, 0], [1, 1, 3]) ==> [[[3, 3, 3]]]

(2)tf.slice(input, [1, 0, 0], [1, 2, 3]) ==> [[[3, 3, 3], [4, 4, 4]]]

(3)tf.slice(input, [1, 0, 0], [2, 1, 3]) ==> [[[3, 3, 3]], [[5, 5, 5]]]

17. FLAGS = tf.app.flags.FLAGS

解析:

(1)tf.app.flags.DEFINE_string()

(2)tf.app.flags.DEFINE_integer()

(3)tf.app.flags.DEFINE_boolean()

(4)tf.app.flags.DEFINE_integer()

说明:TensorFlow通过设置flags来传递tf.app.run()所需的参数。

18. tf.get_default_graph()

解析:得到默认的图。

19. Graph.as_default()

解析:with tf.Graph().as_default():...:使用Graph.as_default()上下文管理器可以覆盖默认的图。

20. 多个Session和Graph

解析:

import tensorflow as tf

g1 = tf.Graph()
with g1.as_default():
c1 = tf.constant([1.0])
with tf.Graph().as_default() as g2:
c2 = tf.constant([2.0]) with tf.Session(graph=g1) as sess1:
print sess1.run(c1)
with tf.Session(graph=g2) as sess2:
print sess2.run(c2)

21. TensorFlow分布式

解析:

(1)in-graph就是模型并行,将模型中不同节点分布式地运行;

(2)between-graph就是数据并行,同时训练多个batch的数据。

22. tf.contrib.framework.get_or_create_global_step

解析:get_or_create_global_step(graph=None):Returns and create (if necessary) the global step tensor.

说明:graph: The graph in which to create the global step tensor. If missing, use default graph.

23. TensorFlow Fold动态计算图工具

解析:TensorFlow Fold库会根据每个不同的输入数据建立单独的计算图,因为各个输入数据都可能具有各自不同的规

模和结构,因此计算图也应该各不相同。此后,动态批处理功能将自动组合这些计算图,以实现在输入数据内部和不

同输入数据之间的批处理操作,同时还可以通过插入一些附加指令来实现不同批处理操作之间的数据互通。

24. sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))

解析:在sess中设置log_device_placement=True来查看每一部分代码在哪里执行。

参考文献:

[1] tensorflow dynamic_rnn与static_rnn使用注意:http://blog.csdn.net/daxiaofan/article/details/70197812

《转》tensorflow学习笔记的更多相关文章

  1. Tensorflow学习笔记2:About Session, Graph, Operation and Tensor

    简介 上一篇笔记:Tensorflow学习笔记1:Get Started 我们谈到Tensorflow是基于图(Graph)的计算系统.而图的节点则是由操作(Operation)来构成的,而图的各个节 ...

  2. Tensorflow学习笔记2019.01.22

    tensorflow学习笔记2 edit by Strangewx 2019.01.04 4.1 机器学习基础 4.1.1 一般结构: 初始化模型参数:通常随机赋值,简单模型赋值0 训练数据:一般打乱 ...

  3. Tensorflow学习笔记2019.01.03

    tensorflow学习笔记: 3.2 Tensorflow中定义数据流图 张量知识矩阵的一个超集. 超集:如果一个集合S2中的每一个元素都在集合S1中,且集合S1中可能包含S2中没有的元素,则集合S ...

  4. TensorFlow学习笔记之--[compute_gradients和apply_gradients原理浅析]

    I optimizer.minimize(loss, var_list) 我们都知道,TensorFlow为我们提供了丰富的优化函数,例如GradientDescentOptimizer.这个方法会自 ...

  5. 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识

    深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...

  6. 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别

    深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...

  7. tensorflow学习笔记(4)-学习率

    tensorflow学习笔记(4)-学习率 首先学习率如下图 所以在实际运用中我们会使用指数衰减的学习率 在tf中有这样一个函数 tf.train.exponential_decay(learning ...

  8. tensorflow学习笔记(3)前置数学知识

    tensorflow学习笔记(3)前置数学知识 首先是神经元的模型 接下来是激励函数 神经网络的复杂度计算 层数:隐藏层+输出层 总参数=总的w+b 下图为2层 如下图 w为3*4+4个   b为4* ...

  9. tensorflow学习笔记(2)-反向传播

    tensorflow学习笔记(2)-反向传播 反向传播是为了训练模型参数,在所有参数上使用梯度下降,让NN模型在的损失函数最小 损失函数:学过机器学习logistic回归都知道损失函数-就是预测值和真 ...

  10. tensorflow学习笔记(1)-基本语法和前向传播

    tensorflow学习笔记(1) (1)tf中的图 图中就是一个计算图,一个计算过程.                                       图中的constant是个常量 计 ...

随机推荐

  1. apache-httpd2.2编译安装

    1.下载源码包 wget http://mirrors.hust.edu.cn/apache/httpd-2.2.32.tar.gz2.解压源码包 tar -zxvf httpd-2.2.32.tar ...

  2. Jmeter之非GUI模式(命令行)执行

    在使用Jmeter进行性能测试时,建议使用非GUI模式执行. 命令行启动 1.进入jmeter安装的bin目录 2.执行Jmeter命令 如下: (1.jmeter.bat -n -t E:\apac ...

  3. 打开Excel提示内存不足

    来越南出差第一天,有个越南妹子跟我反应说Excel打不开,提示的是很常见的“内存不足”的错误, 这种问题一般的判断就是打开的程序太多了,关掉一些就可以了,重启都没解决, 在网上找了下,腾讯管家的这篇h ...

  4. itchat初步解读登录(转)

    原文:https://blog.csdn.net/coder_pig/article/details/81357810 itchat的登录采取的是通过itchat.auto_login()这个函数来完 ...

  5. cocos2dx基础篇(9) 滑块控件CCControlSlider

    [3.x] (1)去掉 “CC” (2)对象类 CCObject 改为 Ref (3)CCControlEvent 改为强枚举 Control::EventType (4)CCControlEvent ...

  6. [转帖]SQL 里面的 case when 的用法

    SQL之case when then else end用法介绍 https://www.2cto.com/database/201804/740772.html 要培训了 看到有case when 之 ...

  7. linux上执行mysql的脚本文件

    我们测试过程中,经常需要执行升级脚本或导入生产测试数据,对于轻量的升级脚本可以直接在客户端工具中打开执行,但是对于文件内容比较大的.sql文件,比如几百M,几G的sql文件,直接拖到客户端工具打开执行 ...

  8. linux 环境 Xshell操作数据库

    一:采用sqlplus连接登录(确保安装了sqlplus) 1:先登陆进入到oracle的数据库的服务器环境下 2:切换到sqlplus操作:  sqlplus /nolog 3:conn /as s ...

  9. HeidiSQL

    相关链接 https://www.heidisql.com/ - 官网 https://github.com/HeidiSQL/HeidiSQL - 源码 参考 ...

  10. 要了解mysql原理,还是要心里有点B树才行

      要了解数据库索引的底层原理,我们就得先了解一种叫树的数据结构,而树中很经典的一种数据结构就是二叉树!所以下面我们就从二叉树到平衡二叉树,再到B-树,最后到B+树来一步一步了解数据库索引底层的原理! ...