[CSP-S模拟测试]:gcd(莫比乌斯反演)
题目描述
有$n$个正整数$x_1\sim x_n$,初始时状态均为未选。有$m$个操作,每个操作给定一个编号$i$,将$x_i$的选取状态取反。每次操作后,你需要求出选取的数中有多少个互质的无序数对。
输入格式
第一行两个整数$n,m$。第二行$n$个整数$x_1\sim x_n$。接下来$m$行每行一个整数。
输出格式
$m$行,每行一个整数表示答案。
样例
样例输入:
4 5
1 2 3 4
1
2
3
4
1
样例输出:
0
1
3
5
2
数据范围与提示
对于$20\%$的数据,$n,m\leqslant 1,000$。
对于另外$30\%$的数据,$x_i\leqslant 100$。
对于$100\%$的数据,$n,m\leqslant 200,000$,$x_i\leqslant 500,000$,$1\leqslant i\leqslant n$。
题解
我们先来设三个量:
$\alpha.s(i)$表示为$i$的倍数的数的个数。
$\beta.g(i)$表示 $gcd$为$i$的倍数的数个数。
$\gamma.f(i)$表示$gcd$为$i$的数的个数。
$s(i)$很好就能求出,而$g(i)=\frac{s(i)\times (s(i)-1))}{2}$,但是我们需要的是$f(i)$,该怎么办呢?
显然,$g(i)=\sum \limits_{i|d}f(d)$,那有又什么用呢?
这里就需要用到一个神奇的东东了:第二类莫比乌斯反演(详见信息学奥赛之数学一本通P145中间)。
于是这个式子便变成了:$f(i)=\sum \limits_{i|d}\mu(\frac{d}{i})g(d)$。
现在我们需要考虑的就只有修改操作了,每次插入或删除一个数的时候只要暴力枚举其因数即可。
时间复杂度:$\Theta(m\sqrt{\max x_i})$。
期望得分:$100$分。
实际得分:$100$分。
代码时刻
#include<bits/stdc++.h>
using namespace std;
int n,m;
long long a[200001];
long long s[500001],g[500001],f[500001];
long long mu[500001],prime[500001],cnt;
bool vis[200001],v[500001];
long long ans,mx;
void pre_work()
{
mu[1]=1;
for(int i=2;i<=mx;i++)
{
if(!v[i])mu[prime[cnt++]=i]=-1;
for(int j=0;j<cnt&&i*prime[j]<=mx;j++)
{
v[i*prime[j]]=1;
if(i%prime[j])mu[i*prime[j]]=-mu[i];
else{mu[i*prime[j]]=0;break;}
}
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
scanf("%lld",&a[i]),mx=max(mx,a[i]);
pre_work();
while(m--)
{
int x,flag;
scanf("%d",&x);
flag=a[x];
if(vis[x])
{
for(int i=1;i*i<=flag;i++)
if(!(flag%i))
{
s[i]--;
ans-=mu[i]*g[i];
g[i]=s[i]*(s[i]-1)/2;
ans+=mu[i]*g[i];
if(flag/i!=i)
{
s[flag/i]--;
ans-=mu[flag/i]*g[flag/i];
g[flag/i]=s[flag/i]*(s[flag/i]-1)/2;
ans+=mu[flag/i]*g[flag/i];
}
}
vis[x]=0;
}
else
{
for(int i=1;i*i<=flag;i++)
if(!(flag%i))
{
s[i]++;
ans-=mu[i]*g[i];
g[i]=s[i]*(s[i]-1)/2;
ans+=mu[i]*g[i];
if(flag/i!=i)
{
s[flag/i]++;
ans-=mu[flag/i]*g[flag/i];
g[flag/i]=s[flag/i]*(s[flag/i]-1)/2;
ans+=mu[flag/i]*g[flag/i];
}
}
vis[x]=1;
}
printf("%lld\n",ans);
}
return 0;
}
rp++
[CSP-S模拟测试]:gcd(莫比乌斯反演)的更多相关文章
- [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)
[BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...
- HDU1695 GCD(莫比乌斯反演)
传送门 看了1个多小时,终于懂了一点了 题目大意:给n,m,k.求gcd(x,y) = k(1<=x<=n, 1<=y<=m)的个数 思路:令F(i)表示i|gcd(x,y)的 ...
- hdu 1695 GCD 莫比乌斯反演入门
GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= ...
- 洛谷P2257 YY的GCD 莫比乌斯反演
原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...
- HYSBZ - 2818 Gcd (莫比乌斯反演)
莫比乌斯反演的入门题,设 \(F(x): gcd(i,j)\%x=0\) 的对数,\(f(x): gcd(i,j)=x\)的对数. 易知\[F(p) = \lfloor \frac{n}{p} \rf ...
- 【BZOJ2818】Gcd [莫比乌斯反演]
Gcd Time Limit: 10 Sec Memory Limit: 256 MB[Submit][Status][Discuss] Description 给定整数N,求1<=x,y&l ...
- Luogu P2257 YY的GCD 莫比乌斯反演
第一道莫比乌斯反演...$qwq$ 设$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$ $F(n)=\sum_{n|d}f(d)=\lfloor \frac{N ...
- BZOJ 2818 Gcd (莫比乌斯反演 或 欧拉函数)
2818: Gcd Time Limit: 10 Sec Memory Limit: 256 MB Submit: 2534 Solved: 1129 [Submit][Status][Discu ...
- BZOJ 2820 luogu 2257 yy的gcd (莫比乌斯反演)
题目大意:求$gcd(i,j)==k,i\in[1,n],j\in[1,m] ,k\in prime,n,m<=10^{7}$的有序数对个数,不超过10^{4}次询问 莫比乌斯反演入门题 为方便 ...
随机推荐
- Ubuntu下使用boost例子
http://blog.csdn.net/dotphoenix/article/details/8459277 1. 安装boost库 sudo apt-get install libboost-al ...
- 函数式编程filter和map的区别
# b = filter(lambda x:x>5,[1,2,3,4,5,6,7]) # print(list(b)) def filters(x): if x > 5: return x ...
- Netty内存池及命中缓存的分配
内存池的内存规格: 在前面的源码分析过程中,关于内存规格大小我们应该还有些印象.其实在Netty 内存池中主要设置了四种规格大小的内存:tiny 是指0-512Byte 之间的规格大小,small 是 ...
- 阿里巴巴离线数据同步工具/平台datax安装、使用笔记
废话不多说,直接上笔记,先来看下参考链接GitHub: https://github.com/alibaba/DataX.此链接有较详细的安装使用方法,还有json参数编写的文档说明,建议多看. Fi ...
- Struts2之动态方法调用
1.感叹号 前台页面 <%@ page language="java" contentType="text/html; charset=UTF-8" pa ...
- 牛逼哄哄的 API 网关是什么鬼?面试必问!
Java技术栈 www.javastack.cn 优秀的Java技术公众号 作者:aCoder2013 github.com/aCoder2013/blog/issues/35 前言 假设你正在开发一 ...
- 清除mac中自动记录的git用户名和密码
应用程序-实用工具-双击钥匙串-右上角搜索github-右击选项删除
- Tensorflow机器学习入门——MINIST数据集识别
参考网站:http://www.tensorfly.cn/tfdoc/tutorials/mnist_beginners.html #自动下载并加载数据 from tensorflow.example ...
- UVAlive 6763 Modified LCS
LCS stands for longest common subsequence, and it is a well known problem. A sequence in thisproblem ...
- MyBatis 配置/注解 SQL CRUD 经典解决方案(2019.08.15持续更新)
本文旨在记录使用各位大神的经典解决方案. 2019.08.14 更新 Mybatis saveOrUpdate SelectKey非主键的使用 MyBatis实现SaveOrUpdate mybati ...