LightOJ 1418 Trees on My Island (Pick定理)
题目链接:LightOJ 1418
Problem Description
I have bought an island where I want to plant trees in rows and columns. So, the trees will form a rectangular grid and each of them can be thought of having integer coordinates by taking a suitable grid point as the origin.
But, the problem is that the island itself is not rectangular. So, I have identified a simple polygonal area inside the island with vertices on the grid points and have decided to plant trees on grid points lying strictly inside the polygon.
Figure: A sample of my island
For example, in the above figure, the green circles form the polygon, and the blue circles show the position of the trees.
Now, I seek your help for calculating the number of trees that can be planted on my island.
Input
Input starts with an integer \(T (≤ 100)\), denoting the number of test cases.
Each case starts with a line containing an integer \(N (3 ≤ N ≤ 10000)\) denoting the number of vertices of the polygon.
Each of the next \(N\) lines contains two integers \(x_i y_i (-10^6 ≤ x_i, y_i ≤ 10^6)\) denoting the co-ordinate of a vertex. The vertices will be given in clockwise or anti-clockwise order. And they will form a simple polygon.
Output
For each case, print the case number and the total number of trees that can be planted inside the polygon.
Sample Input
1
9
1 2
2 1
4 1
4 3
6 2
6 4
4 5
1 5
2 3
Sample Output
Case 1: 8
Note
Dataset is huge, use faster I/O methods.
Solution
题意:
给定一个多边形,顶点都在格点上,求多边形内部的格点个数。
思路
Pick 定理 裸题。
#include <cstdio>
#include <iostream>
#include <vector>
#include <cmath>
#include <algorithm>
using namespace std;
typedef long long ll;
typedef double db;
const db eps = 1e-10;
const db pi = acos(-1.0);
const ll inf = 0x3f3f3f3f3f3f3f3f;
const ll maxn = 1e5 + 10;
inline int dcmp(db x) {
if(fabs(x) < eps) return 0;
return x > 0? 1: -1;
}
class Point {
public:
ll x, y;
Point(ll x = 0, ll y = 0) : x(x), y(y) {}
void input() {
scanf("%lld%lld", &x, &y);
}
Point operator-(const Point a) {
return Point(x - a.x, y - a.y);
}
ll cross(const Point a) {
return x * a.y - y * a.x;
}
};
Point p[maxn];
ll gcd(ll a, ll b) {
return b == 0? a: gcd(b, a % b);
}
int main() {
int T;
scanf("%d", &T);
for(int _ = 1; _ <= T; ++_) {
int n;
scanf("%d", &n);
ll on = 0;
ll s = 0;
for(int i = 0; i < n; ++i) {
p[i].input();
}
p[n] = p[0];
for(int i = 0; i < n; ++i) {
s += (p[i + 1] - p[0]).cross(p[i] - p[0]);
on += gcd(abs(p[i].x - p[i + 1].x), abs(p[i].y - p[i + 1].y));
}
s = abs(s);
ll in = s / 2 - on / 2 + 1;
printf("Case %d: ", _);
printf("%lld\n", in);
}
return 0;
}
LightOJ 1418 Trees on My Island (Pick定理)的更多相关文章
- UVa 10088 - Trees on My Island (pick定理)
样例: 输入:123 16 39 28 49 69 98 96 55 84 43 51 3121000 10002000 10004000 20006000 10008000 30008000 800 ...
- UVa 10088 (Pick定理) Trees on My Island
这种1A的感觉真好 #include <cstdio> #include <vector> #include <cmath> using namespace std ...
- HDU 3775 Chain Code ——(Pick定理)
Pick定理运用在整点围城的面积,有以下公式:S围 = S内(线内部的整点个数)+ S线(线上整点的个数)/2 - 1.在这题上,我们可以用叉乘计算S围,题意要求的答案应该是S内+S线.那么我们进行推 ...
- 【POJ】2954 Triangle(pick定理)
http://poj.org/problem?id=2954 表示我交了20+次... 为什么呢?因为多组数据我是这样判断的:da=sum{a[i].x+a[i].y},然后!da就表示没有数据了QA ...
- Area(Pick定理POJ1256)
Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5429 Accepted: 2436 Description ...
- poj 2954 Triangle(Pick定理)
链接:http://poj.org/problem?id=2954 Triangle Time Limit: 1000MS Memory Limit: 65536K Total Submissio ...
- poj 1265 Area (Pick定理+求面积)
链接:http://poj.org/problem?id=1265 Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: ...
- poj1265Area(pick定理)
链接 Pick定理是说,在一个平面直角坐标系内,如果一个多边形的顶点全都在格点上,那么这个图形的面积恰好就等于边界上经过的格点数的一半加上内部所含格点数再减一. pick定理的一些应用 题意不好懂, ...
- pick定理:面积=内部整数点数+边上整数点数/2-1
//pick定理:面积=内部整数点数+边上整数点数/2-1 // POJ 2954 #include <iostream> #include <cstdio> #include ...
随机推荐
- POJ-1611.TheSuspects.(并查集)
The Suspects Time Limit: 1000MS Memory Limit: 20000K Total Submissions: 55832 Accepted: 26501 De ...
- redis setNx方法
Redis有一系列的命令,特点是以NX结尾,NX是Not eXists的缩写,如SETNX命令就应该理解为:SET if Not eXists.这系列的命令非常有用,这里讲使用SETNX来实现分布式锁 ...
- 并行开发 1.Parallel
原文:8天玩转并行开发——第一天 Parallel的使用 随着多核时代的到来,并行开发越来越展示出它的强大威力,像我们这样的码农再也不用过多的关注底层线程的实现和手工控制, 要了解并行开发,需要先了解 ...
- 常用颜色的RGB分布
RGB色彩模式是工业界的一种颜色标准,它通过对红(RED).绿(GREEN).蓝(BLUE)三种基本颜色的相互组合从而叠加出各种颜色.RGB色彩模式为每一个红.绿.蓝分类了0-255范围内的亮度值. ...
- 手模手配置Eslint,看懂脚手架中的Eslint
使用ESLint前:eslint是干嘛的,我这样写有什么问题,怎么还报错了,太麻烦想去掉这个插件,脚手架中关于eslint文件里的配置是什么意思?怎么设置配置项和规则达到自己想要的检测效果呢?怎么集成 ...
- ipv6地址在URL中的表达方式,如何在URL地址中包含ipv6地址
摘要 本文档定义了在WWW浏览器的URL中执行的文本IPv6地址的格式.在包括Microsoft的IE,Mozilla和Lynx等几个已经被广泛安装使用的浏览器的IPv6版本中,这种格式已经被使用.并 ...
- maven system path,加载本地jar
当引用第三方包,且没有源代码时候,可以使用system path <dependency> <groupId>ctec</groupId> <artifact ...
- 02 | 日志系统:一条SQL更新语句是如何执行的? 学习记录
<MySQL实战45讲>02 | 日志系统:一条SQL更新语句是如何执行的? 学习记录http://naotu.baidu.com/file/ad320c7a0e031c2d6db7b5a ...
- procixx地址
\\192.168.35.7\Download\Builds\procixx_psoc
- "||" 在sql中有什么用
双竖线表示字符串拼接 比如: 'abc' || 'cba' 结果: 'abccba'
