Coursera Machine Learning : Regression 评估性能
评估性能
评估损失
1、Training Error
首先要通过数据来训练模型,选取数据中的一部分作为训练数据.
损失函数可以使用绝对值误差或者平方误差等方法来计算,这里使用平方误差的方法,即: (y-f(x))2
使用此方法计算误差,然后计算所有数据点,并求平均数。
Training Error 越小,模型越好?答案是否定的,下面看看Training Error 和模型复杂度的关系。
从上的的图可以看出,要想使training error越小,模型就会变得越复杂,然后出现了过拟合的现象
很有可能训练数据中有个别异常数据点,如果过度拟合所有的数据点,就会导致模型过拟合,并不能很好的对房价进行预测;
training error 小,并不能说明是个很好的预测。
2、Generalization (true) error 真实误差
首先说明的一点是这个值是不能计算出来的;
计算真实误差,首先需要知道真实值,训练数据中的数据不一定就代表真实值,不过可以通过训练数据中的平均值来估算出来。
比如,计算房子A的房价,找出所有与A类似的房子求出房价,计算平均值。来估算房价。
下面来看看真实误差和模型复杂度的关系:
图像中的真实值,参考图像中颜色变浅的中间位置
通过上图可以看出,模型简单和模型过度复杂,都不能很好的对数据进行预测
3、Test Error
Test Error 和 True Error 接近,Test Error的测试数据来自测试数据集。
对测试数据集进行计算误差,计算方法和Training Error类似。
Training, true, & test error 和 模型复杂度的比较:
test error 在 true error的周边波动,接近true error的值。
从上图中可以看出,总结出过拟合的判断:
模型中存在估计参数w'
1. training error(w) < training error(w')
2. true error(w) > true error (w')
说明w过拟合
误差的3个来源
Noise, Bias, Variance
1、Noise 噪声
固有的,不可约减的
2、Bias 偏差
模型越简单,偏差越大
模型越复杂,偏差越小
3、Variance 方差
模型简单,方差小
模型复杂,方差大
偏差和方差权衡,偏差和方差不能计算
training error和测试数据量的关系,固定的模型复杂度,少量数据拟合更好,误差会更小;随着数据量的增大,误差也随之增大,会达到一个临界点与true error 相等。
true error 和测试数据量的关系,固定的模型复杂度,少量的数据的true error会更大;随着数据量的增大,误差也随之减小,会到达一个临界点与training error 相等。
Coursera Machine Learning : Regression 评估性能的更多相关文章
- Coursera Machine Learning : Regression 多元回归
多元回归 回顾一下简单线性回归:一个特征,两个相关系数 实际的应用要比这种情况复杂的多,比如 1.房价和房屋面积并不只是简单的线性关系. 2.影响房价的因素有很多,不仅仅是房屋面积,还包括很多其他因素 ...
- Coursera Machine Learning : Regression 简单回归
简单回归 这里以房价预测作为例子来说明:这里有一批关于房屋销售记录的历史数据,知道房价和房子的大小.接下来就根据房子的大小来预测下房价. 简单线性回归,如下图所示,找到一条线,大体描述了历史数据的走势 ...
- Coursera Machine Learning: Regression 证书
- Coursera machine learning 第二周 quiz 答案 Linear Regression with Multiple Variables
https://www.coursera.org/learn/machine-learning/exam/7pytE/linear-regression-with-multiple-variables ...
- 【Coursera - machine learning】 Linear regression with one variable-quiz
Question 1 Consider the problem of predicting how well a student does in her second year of college/ ...
- Coursera machine learning 第二周 编程作业 Linear Regression
必做: [*] warmUpExercise.m - Simple example function in Octave/MATLAB[*] plotData.m - Function to disp ...
- Coursera, Machine Learning, notes
Basic theory (i) Supervised learning (parametric/non-parametric algorithms, support vector machine ...
- 神经网络作业: NN LEARNING Coursera Machine Learning(Andrew Ng) WEEK 5
在WEEK 5中,作业要求完成通过神经网络(NN)实现多分类的逻辑回归(MULTI-CLASS LOGISTIC REGRESSION)的监督学习(SUOERVISED LEARNING)来识别阿拉伯 ...
- Coursera, Machine Learning, Anomoly Detection & Recommender system
Algorithm: When to select Anonaly detection or Supervised learning? 总的来说guideline是如果positive e ...
随机推荐
- 如何将App程序发布到App Store?
见链接:http://my.oschina.net/u/1245365/blog/201920
- html狂记
由于承接一部分站点优化工作,竟无节操地好几天没有喂博客,好了,今天完成交接工作,马上奉上DIV+CSS传统开发的干货一枚,内容绝非原创,仅是收集.学习.消化.总结.吐出... 基本结构标签: < ...
- NOIP2008 传纸条
题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是 ...
- (分享)多功能 PDF转换器v3.0版本
转换的效果非常不错,值得使用.破解成功的截图:这个程序必须随便输入注册码注册,不然会有水印的. 这是程序主界面了 正在测试pdf转word过程,转换结果个人感觉非常不错,跟原版pdf的格式非常接近,个 ...
- js中array的filter用法
function bouncer(arr) { // Don't show a false ID to this bouncer. arr = arr.filter(function(val) { i ...
- vi、vim 查找替换
vi/vim 中可以使用 :s 命令来替换字符串.该命令有很多种不同细节使用方法,可以实现复杂的功能,记录几种在此,方便以后查询. :s/vivian/sky/ 替换当前行第一个 vivian ...
- C学习笔记
1.struct struct 是一种复合数据类型,其构成元素可以是一些复合数据类型,如array,struct,union,缺省情况下,编译器为结构体的每个成员按其自然对齐(默认对齐,按照结构体成员 ...
- Python自动化 【第十八篇】:JavaScript 正则表达式及Django初识
本节内容 JavaScript 正则表达式 Django初识 正则表达式 1.定义正则表达式 /.../ 用于定义正则表达式 /.../g 表示全局匹配 /.../i 表示不区分大小写 /.../m ...
- 关于SQL预编译问题。
标准都是sql.add('insert a (b,c,d)values(:a,:b,:c)');params.parambyname('a').asstring:='';...
- ubuntu 14.4 中文语言包安装问题
1.安装前,请选择更新源,在系统设定 system setting 里,选择software and updates 里,选择中国的源,用于快速更新语言包 2.在language support里选择 ...