该算法由facebook在2016年开源,典型应用场景是“带监督的文本分类问题”。

 

模型

模型的优化目标如下:

 

其中,$<x_n,y_n>$是一条训练样本,$y_n$是训练目标,$x_n$是normalized bag of features。矩阵参数A是基于word的look-up table,也就是A是词的embedding向量。$Ax_n$矩阵运算的数学意义是将word的embedding向量找到后相加或者取平均,得到hidden向量。矩阵参数B是函数f的参数,函数f是一个多分类问题,所以$f(BAx_n)$是一个多分类的线性函数。优化目标是使的这个多分类问题的似然越大越好。

将优化目标表示为图模型如下:

 

与word2vec的区别

这个模型与word2vec有很多相似的地方,也有很多不相似的地方。相似地方让这两种算法不同的地方让这两

相似的地方:

  1. 图模型结构很像,都是采用embedding向量的形式,得到word的隐向量表达。
  2. 都采用很多相似的优化方法,比如使用Hierarchical softmax优化训练和预测中的打分速度。

不同的地方:

  1. word2vec是一个无监督算法,而fasttext是一个有监督算法。word2vec的学习目标是skip的word,而fasttext的学习目标是人工标注的分类结果。
  2. word2vec要求训练样本带有“序”的属性,而fasttext使用的是bag of words的思想,使用的是n-gram的无序属性。

V.S. 深度神经网络

fasttext只有1层神经网络,属于所谓的shallow learning,但是fasttext的效果并不差,而且具备学习和预测速度快的优势,在工业界这点非常重要。

  • 比一般的神经网络模型的精确度还要高。
  • 训练和评估速度快几百倍。10分钟内就可以在一台多核CPU训练10亿词汇。1分种内完成100万句子在31万中类型中的分类。

 

文献


作者:EasonZhao
链接:http://www.jianshu.com/p/b7ede4e842f1
來源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

带监督的文本分类算法FastText的更多相关文章

  1. fastText文本分类算法

    1.概述 FastText 文本分类算法是有Facebook AI Research 提出的一种简单的模型.实验表明一般情况下,FastText 算法能获得和深度模型相同的精度,但是计算时间却要远远小 ...

  2. 【十大算法实现之naive bayes】朴素贝叶斯算法之文本分类算法的理解与实现

    关于bayes的基础知识,请参考: 基于朴素贝叶斯分类器的文本聚类算法 (上) http://www.cnblogs.com/phinecos/archive/2008/10/21/1315948.h ...

  3. 文本分类需要CNN?No!fastText完美解决你的需求(前篇)

    http://blog.csdn.net/weixin_36604953/article/details/78195462?locationNum=8&fps=1 文本分类需要CNN?No!f ...

  4. 文本分类需要CNN?No!fastText完美解决你的需求(后篇)

    http://blog.csdn.net/weixin_36604953/article/details/78324834 想必通过前一篇的介绍,各位小主已经对word2vec以及CBOW和Skip- ...

  5. 文本分类(六):使用fastText对文本进行分类--小插曲

    http://blog.csdn.net/lxg0807/article/details/52960072 环境说明:python2.7.linux 自己打自己脸,目前官方的包只能在linux,mac ...

  6. 万字总结Keras深度学习中文文本分类

    摘要:文章将详细讲解Keras实现经典的深度学习文本分类算法,包括LSTM.BiLSTM.BiLSTM+Attention和CNN.TextCNN. 本文分享自华为云社区<Keras深度学习中文 ...

  7. fastText、TextCNN、TextRNN……这里有一套NLP文本分类深度学习方法库供你选择

    https://mp.weixin.qq.com/s/_xILvfEMx3URcB-5C8vfTw 这个库的目的是探索用深度学习进行NLP文本分类的方法. 它具有文本分类的各种基准模型,还支持多标签分 ...

  8. 基于Naive Bayes算法的文本分类

    理论 什么是朴素贝叶斯算法? 朴素贝叶斯分类器是一种基于贝叶斯定理的弱分类器,所有朴素贝叶斯分类器都假定样本每个特征与其他特征都不相关.举个例子,如果一种水果其具有红,圆,直径大概3英寸等特征,该水果 ...

  9. 文本分类(TFIDF/朴素贝叶斯分类器/TextRNN/TextCNN/TextRCNN/FastText/HAN)

    目录 简介 TFIDF 朴素贝叶斯分类器 贝叶斯公式 贝叶斯决策论的理解 极大似然估计 朴素贝叶斯分类器 TextRNN TextCNN TextRCNN FastText HAN Highway N ...

随机推荐

  1. mybatis学习笔记(三)-- 优化数据库连接配置

    原来直接把数据库连接配置信息写在conf.xml配置中,如下 <?xml version="1.0" encoding="UTF-8"?> < ...

  2. HDU 5832 A water problem 水题

    A water problem 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5832 Description Two planets named H ...

  3. FireDAC 下的 Sqlite [7] - 备份、优化、事务(Transaction)

    用 TFDSQLiteBackup 控件, 两三行代码即可完成 Sqlite 数据库的备份. procedure TForm1.Button1Click(Sender: TObject); begin ...

  4. STM32 F4 General-purpose Timers for Periodic Interrupts

    STM32 F4 General-purpose Timers for Periodic Interrupts

  5. Renesas M16C/6X -- Simple PWM Signal Generation Using DMA

    1. Requirements To generate a PWM output, we need to create a train of pulses with constant period a ...

  6. 如何运行Hadoop自带的例子

    bin/hadoop jar share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.4.jar wordcount /WordCount/WordC ...

  7. 使用Application.GetResourceStream方法加载资源时得到的总是null

    我们可以预先把程序中用到的资源,如图片,音乐等放入项目中,打包进XAP文档,需要的时候从中调用.下面就说说具体实现方法. 第一步,把数据存进项目. 1.右键点击项目名称-添加-新建文件夹(英文版请自行 ...

  8. mybatis学习之路----批量更新数据两种方法效率对比

    原文:https://blog.csdn.net/xu1916659422/article/details/77971696/ 上节探讨了批量新增数据,这节探讨批量更新数据两种写法的效率问题. 实现方 ...

  9. 如何:为iOS 的方法写注释 让xcode 能够索引得到?

    如何:为iOS 的方法写注释 让xcode 能够索引得到? 按照如下方法为ios项目写注释: 将会让xcode能够索引得到如下结果:

  10. 替换NSUserDefaults的方案

    替换NSUserDefaults的方案 效果 源码 https://github.com/YouXianMing/iOS-Utilities // // BaseValueStorageManager ...