In case of failure

http://acm.hdu.edu.cn/showproblem.php?pid=2966

Time Limit: 60000/30000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2843    Accepted Submission(s): 1209

Problem Description
To help their clients deal with faulty Cash Machines, the board of The Planar Bank has decided to stick a label expressing sincere regret and sorrow of the bank about the failure on every ATM. The very same label would gently ask the customer to calmly head to the nearest Machine (that should hopefully
work fine).

In order to do so, a list of two-dimensional locations of all n ATMs has been prepared, and your task is to find for each of them the one closest with respect to the Euclidean distance.

 
Input
The input contains several test cases. The very first line contains the number of cases t (t <= 15) that follow. Each test cases begin with the number of Cash Machines n (2 <= n <= 10^5). Each of the next n lines contain the coordinates of one Cash Machine x,y (0 <= x,y <=10^9) separated by a space. No two
points in one test case will coincide.
 
Output
For each test case output n lines. i-th of them should contain the squared distance between the i-th ATM from the input and its nearest neighbour.
 
Sample Input
2
10
17 41
0 34
24 19
8 28
14 12
45 5
27 31
41 11
42 45
36 27
15
0 0
1 2
2 3
3 2
4 0
8 4
7 4
6 3
6 1
8 0
11 0
12 2
13 1
14 2
15 0
 
Sample Output
200
100
149
100
149
52
97
52
360
97
5
2
2
2
5
1
1
2
4
5
5
2
2
2
5
 
Source

注意,最近点不能是自己,所以需要判cur.first!=0时才加入队列中

 #include<iostream>
#include<queue>
#include<cstring>
#include<algorithm>
#include<cstdio>
#define N 100005
using namespace std; int n,m,id;//n是点数,m是维度,id是当前切的维度 struct sair{
long long p[];
bool operator<(const sair &b)const{
return p[id]<b.p[id];
}
}_data[N],data[N<<],tt[N];
int flag[N<<]; priority_queue<pair<long long,sair> >Q; void build(int l,int r,int rt,int dep){
if(l>r) return;
flag[rt]=;
flag[rt<<]=flag[rt<<|]=-;
id=dep%m;
int mid=l+r>>;
nth_element(_data+l,_data+mid,_data+r+);
data[rt]=_data[mid];
build(l,mid-,rt<<,dep+);
build(mid+,r,rt<<|,dep+);
} void query(sair p,int k,int rt,int dep){
if(flag[rt]==-) return;
pair<long long,sair> cur(,data[rt]);//获得当前节点
for(int i=;i<m;i++){//计算当前节点到P点的距离
cur.first+=(cur.second.p[i]-p.p[i])*(cur.second.p[i]-p.p[i]);
}
int idx=dep%m;
int fg=;
int x=rt<<;
int y=rt<<|;
if(p.p[idx]>=data[rt].p[idx]) swap(x,y);
if(~flag[x]) query(p,k,x,dep+);
//开始回溯
if(Q.size()<k){
if(cur.first!=){
Q.push(cur);
}
fg=;
}
else{
if(cur.first<Q.top().first){
if(cur.first!=){
Q.pop();
Q.push(cur);
}
}
if((p.p[idx]-data[rt].p[idx])*(p.p[idx]-data[rt].p[idx])<Q.top().first){
fg=;
}
}
if(~flag[y]&&fg){
query(p,k,y,dep+);
}
} long long ans; int main(){
int T;
scanf("%d",&T);
while(T--){
m=;
scanf("%d",&n);
for(int i=;i<=n;i++){
for(int j=;j<m;j++){
scanf("%lld",&_data[i].p[j]);
tt[i].p[j]=_data[i].p[j];
}
}
build(,n,,);
int k=;
for(int i=;i<=n;i++){
sair tmp;
for(int j=;j<m;j++)
tmp.p[j]=tt[i].p[j];
while(!Q.empty()){
Q.pop();
}
query(tmp,k,,);
ans=Q.top().first;
Q.pop();
printf("%lld\n",ans);
}
}
}

In case of failure的更多相关文章

  1. HDU #2966 In case of failure

    Overview 给出平面上两两不重合的\(n\)个整点, 求每个点到它在其他\(n-1\)个点的最近临点的欧几里得距离的平方. Solution k-d tree 模板题. 关于k-d tree, ...

  2. 【HDOJ】2966 In case of failure

    KD树,这东西其实在ML经常被使用,不过30s的时限还是第一次见. /* 2966 */ #include <iostream> #include <string> #incl ...

  3. hdu 2966 In case of failure k-d树

    题目链接 给n个点, 求出每个点到离它最近的点的距离. 直接建k-d树然后查询就可以  感觉十分神奇... 明白了算法原理但是感觉代码还不是很懂... #include <bits/stdc++ ...

  4. 【 HDU2966 】In case of failure(KD-Tree)

    BUPT2017 wintertraining(15) #5E HDU - 2966 题意 给平面直角坐标系下的n个点的坐标,求离每个点和它最近点的距离的平方.\(2 \le n \le 10^5\) ...

  5. HDU2966 In case of failure(浅谈k-d tree)

    嘟嘟嘟 题意:给定\(n\)个二维平面上的点\((x_i, y_i)\),求离每一个点最近的点得距离的平方.(\(n \leqslant 1e5\)) 这就是k-d tree入门题了. k-d tre ...

  6. kd树 hdu2966 In case of failure

    传送门:pid=2966" target="_blank">点击打开链接 题意:给n个点,求对于每一个点到近期点的欧几里德距离的平方. 思路:看鸟神博客学kd树劲啊 ...

  7. Scala For Java的一些参考

          变量 String yourPast = "Good Java Programmer"; val yourPast : String = "Good Java ...

  8. redis.conf配置详细解析

    # redis 配置文件示例 # 当你需要为某个配置项指定内存大小的时候,必须要带上单位, # 通常的格式就是 1k 5gb 4m 等酱紫: # # 1k => 1000 bytes # 1kb ...

  9. 基于ZooKeeper的分布式锁和队列

    在分布式系统中,往往需要一些分布式同步原语来做一些协同工作,上一篇文章介绍了Zookeeper的基本原理,本文介绍下基于Zookeeper的Lock和Queue的实现,主要代码都来自Zookeeper ...

随机推荐

  1. hdu 1278 逃离迷宫

    逃离迷宫 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submis ...

  2. COMMON INTERVIEW QUESTIONS

    1. What do you see yourself doing five years from now? 2. What motivates you to put forth your great ...

  3. 从Tomcat无法正常关闭讲讲Java线程关闭问题【转载】

    正常情况下,会优先采用catalina.sh stop来停止Tomcat实例,这样可以让服务有机会处理完请求,并做好善后工作. 但如果通过catalina.sh stop命令无法关闭Tomcat实例, ...

  4. 搭建MySQL高可用负载均衡集群(收藏)

    https://www.cnblogs.com/phpstudy2015-6/p/6706465.html

  5. 一种新型远距临场机器人 Fusion / Full Body Surrogacy for Collaborative Communication

    近日,来自日本庆应大学的机器人专家开发出一种新型远距临场机器人 Fusion,允许操作者远程控制别人的身体来帮助他们完成操作任务.Fusion「栖居」在代理者的背上,具备立体视觉和双声道听觉,可以通过 ...

  6. Flask 进阶二

    flask中的路由系统: endpoint:反向url地址,默认为视图函数名(url_for). from flask import Flask,url_for app = Flask(__name_ ...

  7. 如何从编程的本质理解JVM内存模型

    如何从编程的本质理解JVM内存模型 一般聊JVM内存模型都是把图截出来,然后对着图,解释上面堆.栈之类的概念.这篇将分享下,如何从编程的本质上理解,JVM内存模型是什么样子,为什么是这个样子,不再死记 ...

  8. Sqlserver查询数据库文件大小和剩余空间

    在MS Sql Server中可以能过以下的方法查询出磁盘空间的使用情况及各数据库数据文件及日志文件的大小及使用利用率: 1.查询各个磁盘分区的剩余空间:Exec master.dbo.xp_fixe ...

  9. leetcode342

    public class Solution { public bool IsPowerOfFour(int num) { ) && ((num & (num - )) == ) ...

  10. java求两个数百分比,精确到指定位数

    // 获取百分比,不带小数点 private String getPercentage(String num, String total){ NumberFormat numberFormat = N ...