自然语言处理(ML),机器学习(NLP),信息检索(IR)等领域,评估(evaluation)是一个必要的工作,而其评价指标往往有如下几点:准确率(accuracy),精确率(Precision),召回率(Recall)和F1-Measure。

本文将简单介绍其中几个概念。中文中这几个评价指标翻译各有不同,所以一般情况下推荐使用英文。

现在我先假定一个具体场景作为例子:

假如某个班级有男生80人,女生20人,共计100人.目标是找出所有女生.
现在某人挑选出50个人,其中20人是女生,另外还错误的把30个男生也当作女生挑选出来了.
作为评估者的你需要来评估(evaluation)下他的工作

将挑选结果用 矩阵示意表来表示 : 定义TP,FN,FP,TN四种分类情况

  相关(Relevant),正类 无关(NonRelevant),负类
被检索到(Retrieved) TP 系统检索到的相关文档,例"其中20人是女生" FP 系统检索到的不相关文档,例”错误把30个男生当女生“
未被检索到(Not Retrieved) FN 相关系统未检索到的文档,例"未挑0人是女生" TN 相关但是系统没有检索到的文档,例”未挑50人非女生“

准确率(accuracy)的公式是,其定义是: 对于给定的测试数据集,分类器正确分类的样本数与总样本数之比。也就是损失函数是0-1损失时测试数据集上的准确率

A = (20+50) / 100 = 70%

精确率(precision)的公式是,它计算的是所有被检索到的item中,"应该被检索到"的item占的比例。

P = 20 / (20+30) = 40%

召回率(recall)的公式是,它计算的是所有检索到的item占所有"应该检索到的item"的比例。

R = 20 / (20 + 0) = 100%

综合评价指标(F-Measure)是Precision和Recall加权调和平均:

当参数a=1时,就是最常见的F1了:

P和R指标有的时候是矛盾的,综合考虑精确率(precision)和召回率(recall)这两个度量值。很容易理解,F1综合了P和R的结果,当F1较高时则比较说明实验方法比较理想。

F1 = 2*0.4*1 / (0.4 + 1) = 57%

(转载)准确率(accuracy),精确率(Precision),召回率(Recall)和综合评价指标(F1-Measure )-绝对让你完全搞懂这些概念的更多相关文章

  1. 准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure

    yu Code 15 Comments  机器学习(ML),自然语言处理(NLP),信息检索(IR)等领域,评估(Evaluation)是一个必要的 工作,而其评价指标往往有如下几点:准确率(Accu ...

  2. 准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure(对于二分类问题)

    首先我们可以计算准确率(accuracy),其定义是: 对于给定的测试数据集,分类器正确分类的样本数与总样本数之比.也就是损失函数是0-1损失时测试数据集上的准确率. 下面在介绍时使用一下例子: 一个 ...

  3. 精确率与召回率,RoC曲线与PR曲线

    在机器学习的算法评估中,尤其是分类算法评估中,我们经常听到精确率(precision)与召回率(recall),RoC曲线与PR曲线这些概念,那这些概念到底有什么用处呢? 首先,我们需要搞清楚几个拗口 ...

  4. 目标检测评价指标mAP 精准率和召回率

    首先明确几个概念,精确率,召回率,准确率 精确率precision 召回率recall 准确率accuracy 以一个实际例子入手,假设我们有100个肿瘤病人. 95个良性肿瘤病人,5个恶性肿瘤病人. ...

  5. 准确率、精确率、召回率、F1

    在搭建一个AI模型或者是机器学习模型的时候怎么去评估模型,比如我们前期讲的利用朴素贝叶斯算法做的垃圾邮件分类算法,我们如何取评估它.我们需要一套完整的评估方法对我们的模型进行正确的评估,如果模型效果比 ...

  6. 机器学习性能指标精确率、召回率、F1值、ROC、PRC与AUC--周振洋

    机器学习性能指标精确率.召回率.F1值.ROC.PRC与AUC 精确率.召回率.F1.AUC和ROC曲线都是评价模型好坏的指标,那么它们之间有什么不同,又有什么联系呢.下面让我们分别来看一下这几个指标 ...

  7. 一文让你彻底理解准确率,精准率,召回率,真正率,假正率,ROC/AUC

    参考资料:https://zhuanlan.zhihu.com/p/46714763 ROC/AUC作为机器学习的评估指标非常重要,也是面试中经常出现的问题(80%都会问到).其实,理解它并不是非常难 ...

  8. 二分类算法的评价指标:准确率、精准率、召回率、混淆矩阵、AUC

    评价指标是针对同样的数据,输入不同的算法,或者输入相同的算法但参数不同而给出这个算法或者参数好坏的定量指标. 以下为了方便讲解,都以二分类问题为前提进行介绍,其实多分类问题下这些概念都可以得到推广. ...

  9. 目标检测评价标准(mAP, 精准度(Precision), 召回率(Recall), 准确率(Accuracy),交除并(IoU))

    1. TP , FP , TN , FN定义 TP(True Positive)是正样本预测为正样本的数量,即与Ground truth区域的IoU>=threshold的预测框 FP(Fals ...

随机推荐

  1. SpringMVC -- 梗概--源码--贰--异常管理

    附:实体类 Class : User package com.c61.entity; import java.text.SimpleDateFormat; import java.util.Date; ...

  2. MacOS的多重启动工具

    在osx Lion升级到Mavericks后原有的refit(http://refit.sourceforge.net)启动管理工具就失效了,refit已经停止更新,新的分支项目时rEFInd(htt ...

  3. flexbox子盒子order属性

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  4. javascript使用jQuery加载CSV文件+ajax关闭异步

    <script src="jquery-3.3.1.min.js"></script>定义一个csv函数// 关闭异步,否则cesium初始化的时候,csv ...

  5. 第十七篇:IO复用之select实现

    前言 在看过前文:初探IO复用后,想必你已对IO复用这个概念有了初步但清晰的认识. 接下来,我要在一个具体的并发客户端中实现它(基于select函数),使得一旦服务器中的客户进程被终止的时候,客户端这 ...

  6. Elasticsearch 5.x 关于term query和match query的认识

    http://blog.csdn.net/yangwenbo214/article/details/54142786 一.基本情况 前言:term query和match query牵扯的东西比较多, ...

  7. 初步总结javascript中学习DOM之前的知识

    嘿嘿,又到了周末时间,周六其实就是总结这周的学习的,记得周二周三刚开始接触javascript时间,还是不知道怎么学习的,就感觉找不到方向,那时间学习的只是总结了一些简单的定义或者是学习结构,今天就把 ...

  8. 通过java的i/o机制进行图片流的存储以及对网络图片的存储

    存储内地图片思路:首先把原有的图片以流的方式读取出来,再以流的方式存储到目标文件: package imgStream; import java.io.*; public class ImgStrea ...

  9. Github上star和fork比较高的vim配置方案

    https://github.com/amix/vimrchttps://github.com/humiaozuzu/dot-vimrchttps://github.com/spf13/spf13-v ...

  10. css !important用法以及CSS样式使用优先级判断

    之前一直看到很多css中都有!important这个样式,一直不知道有什么作用的,今天在网上详细了解了一下,看了别人的博客,顺便转载收藏一下 css !important用法CSS样式使用优先级判断 ...