一、题目:

一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。

二、思路:

f(n)=f(n-1)+f(n-2)+...+f(0),f(1)=1,f(0)=1,=>f(n)=2*f(n-1)

三、代码:

   

【剑指offer】变态跳台阶的更多相关文章

  1. (原)剑指offer变态跳台阶

    变态跳台阶 时间限制:1秒空间限制:32768K 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法.   分析一下明天是个斐波那契 ...

  2. 剑指Offer 变态跳台阶

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法.   其实就是斐波那契数列问题. 假设f(n)是n个台阶跳的次数. f(1) = ...

  3. 剑指offer——变态跳台阶

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 问题分析 由于每次跳的阶数不确定,没有一个固定的规律,但是可以了解的是后一次跳 ...

  4. 用js刷剑指offer(变态跳台阶)

    一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 牛客网链接 思路 假设青蛙跳上一个n级的台阶总共有f(n)种跳法. 现在青蛙从第n个台阶 ...

  5. 《剑指offer》 跳台阶

    本题来自<剑指offer> 跳台阶 题目1: 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 思路: 同上一篇. C ...

  6. 剑指offer:跳台阶

    目录 题目 解题思路 具体代码 题目 题目链接 剑指offer:跳台阶 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). ...

  7. 剑指offer例题——跳台阶、变态跳台阶

    题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 思路: n<=0时,有0种跳法 n=1时,只有一种跳法 n=2时,有 ...

  8. 牛客网——剑指offer(跳台阶以及变态跳台阶_java实现)

    首先说一个剪枝的概念: 剪枝出现在递归和类递归程序里,因为递归操作用图来表示就是一棵树,树有很多分叉,如果不作处理,就有很多重复分叉,会降低效率,如果能把这些分叉先行记录下来,就可以大大提升效率——这 ...

  9. 剑指offer:跳台阶问题

    基础跳台阶 题目 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 解题思路 这道题就是斐波那契数列的变形问法,因为跳上第N个台阶 ...

  10. Go语言实现:【剑指offer】跳台阶

    该题目来源于牛客网<剑指offer>专题. 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 1阶:共1种跳法: 2阶 ...

随机推荐

  1. xmlWriter

    MemoryStream msXml = new MemoryStream(); XmlTextWriter xmlWriter = new XmlTextWriter(msXml, Encoding ...

  2. Android O 获取APK文件权限 Demo案例

    1. 通过 aapt 工具查看 APK权限 C:\Users\zh>adb pull /system/priv-app/Settings . /system/priv-app/Settings/ ...

  3. Linux 安装GCC讲解(在线和无网离线)

    本文主要介绍如何在无网络的环境下怎么离线安装GCC,如果有网,只需要通过命令 yum install gcc 进行安装就可以了,yum会自动把所有关联的依赖包也一起安装了,一键安装. yum inst ...

  4. Linux下socket最大连接数 ulimit -n 最大值修改

    请求多的Linux服务器,如不改最大打开文件数的话,那是一个悲剧~可以用命令 ulimit -n 看看当前最大可打开文件数 默认是1024如果加大呢?临时方法是ulimit -n 8192 这个方法是 ...

  5. isolinux.cfg 文件是干什么的

    1.   首先光盘镜像也就是iso文件采用的是“ISO 9660 ”文件系统 . cd上的文件都存在这个简单的iso文件系统里,linux可以用mount  -o loop 直接把*.iso文件mou ...

  6. Office word 2007不能另存为pdf格式的解决方法

    我们在使用Office word 2007时,经常会使用到另存为 PDF 或 XPS(P),遗憾的是,很多人都找不到这个选项, 或者在安装word的时候,并没有安装该加载项,需要你在后期安装,我们来怎 ...

  7. 【CF878C】Tournament set+并查集+链表

    [CF878C]Tournament 题意:有k个项目,n个运动员,第i个运动员的第j个项目的能力值为aij.一场比赛可以通过如下方式进行: 每次选出2个人和一个项目,该项目能力值高者获胜,败者被淘汰 ...

  8. Mac - Can't connect to local MySQL server through socket '/tmp/mysql.sock' (2)

    在终端输入mysql,结果出现 macdeMacBook-Pro:~ mac$ alias mysql=/usr/local/mysql/bin/mysql macdeMacBook-Pro:~ ma ...

  9. Twig---基本使用

    三种特殊语法: {{ … }}   “说些什么”:输出一个变量值或者一个表达式的结果到模板.如:{{ item.username }}. twig也包含filters,它可以在模板渲染之前改变输出内容 ...

  10. Spark2 生存分析Survival regression

    在spark.ml中,实现了加速失效时间(AFT)模型,这是一个用于检查数据的参数生存回归模型. 它描述了生存时间对数的模型,因此它通常被称为生存分析的对数线性模型. 不同于为相同目的设计的比例风险模 ...