Crash的数字表格
求\(\sum_{i=1}^N\sum_{j=1}^Mlcm(i,j),n,m\leq 10^7\)
解
设\(N<M\),显然有
\]
设
\]
\]
设\(dc[k]=\sum_{i=1}^ki=\frac{(1+k)\times k}{2},F(k)=k^2dc(N/k)dc(M/k)\)
由Mobius反演定理我们有
\]
代入有
\]
\]
维护出后式\(x^2\mu(x)\),两次整除分块即可,不难得知时间复杂度\(O(n)\)。
顺便提一下,如果\(N,M\)很小,我们可以变成一下形式,变为\(O(nlogn+T\sqrt{n})\)(T为询问组数)。
\]
参考代码:
#include <iostream>
#include <cstdio>
#define il inline
#define ri register
#define ll long long
#define yyb 20101009
#define swap(x,y) x^=y^=x^=y
using namespace std;
bool check[10000001];
int prime[750000],pt,mb[10000001];
void prepare(int);
il int min(int,int),dx(int,int);
int main(){
int n,m,nd,md,ndx,mdx,i,ij,j,
jj,ans1(0),ans2;
scanf("%d%d",&n,&m);
if(n>m)swap(n,m);prepare(m);
for(i=1;i<=n;i=ij+1){
ij=min(n/(n/i),m/(m/i));
ans2&=0,nd=n/i,md=m/i;
for(j=1;j<=nd;j=jj+1)
jj=min(nd/(nd/j),md/(md/j)),
(ans2+=(ll)(mb[jj]-mb[j-1])*dx(1,nd/j)%yyb*dx(1,md/j)%yyb)%=yyb;
(ans1+=(ll)ans2*dx(i,ij)%yyb)%=yyb;
}printf("%d",(ans1+yyb)%yyb);
return 0;
}
il int dx(int a,int b){
return (ll)(a+b)*(b-a+1)/2%yyb;
}
void prepare(int n){
int i,j;check[1]|=mb[1]|=true;
for(i=2;i<=n;++i){
if(!check[i])prime[++pt]=i,mb[i]=-1;
for(j=1;j<=pt&&prime[j]<=n/i;++j){
check[i*prime[j]]|=true;
if(!(i%prime[j]))break;
mb[i*prime[j]]=-mb[i];
}
}for(i=1;i<=n;++i)mb[i]=((ll)mb[i]*i%yyb*i+mb[i-1])%yyb;
}
il int min(int a,int b){
return a<b?a:b;
}
Crash的数字表格的更多相关文章
- BZOJ 2154: Crash的数字表格 [莫比乌斯反演]
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2924 Solved: 1091[Submit][Status][ ...
- 【BZOJ】【2154】Crash的数字表格
莫比乌斯反演 PoPoQQQ讲义第4题 题解:http://www.cnblogs.com/jianglangcaijin/archive/2013/11/27/3446169.html 感觉两次sq ...
- 【莫比乌斯反演】关于Mobius反演与lcm的一些关系与问题简化(BZOJ 2154 crash的数字表格&&BZOJ 2693 jzptab)
BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b ...
- 【BZOJ 2154】Crash的数字表格 (莫比乌斯+分块)
2154: Crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能 ...
- 【BZOJ2154】Crash的数字表格(莫比乌斯反演)
[BZOJ2154]Crash的数字表格(莫比乌斯反演) 题面 BZOJ 简化题意: 给定\(n,m\) 求\[\sum_{i=1}^n\sum_{j=1}^mlcm(i,j)\] 题解 以下的一切都 ...
- BZOJ2154/BZOJ2693/Luogu1829 Crash的数字表格/JZPFAR 莫比乌斯反演
传送门--Luogu 传送门--BZOJ2154 BZOJ2693是权限题 其中JZPFAR是多组询问,Crash的数字表格是单组询问 先推式子(默认\(N \leq M\),所有分数下取整) \(\ ...
- BZOJ2154 Crash的数字表格 【莫比乌斯反演】
BZOJ2154 Crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b) ...
- 2154: Crash的数字表格
2154: Crash的数字表格 Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 3372 Solved: 1258[Submit][Status][ ...
- A1231. Crash的数字表格(贾志鹏)
A1231. Crash的数字表格(贾志鹏) 时间限制:2.0s 内存限制:512.0MB 总提交次数:410 AC次数:154 平均分:63.93 将本题分享到: ...
随机推荐
- Spark-Mllib中各分类算法的java实现(简易教程)
一.简述 Spark是当下非常流行的数据分析框架,而其中的机器学习包Mllib也是其诸多亮点之一,相信很多人也像我那样想要快些上手spark.下面我将列出实现mllib分类的简明代码,代码中将简述训练 ...
- 【LA11248 训练指南】网络扩容【最大流】
题意: 给定一个有向网络,每条边均有一个容量.问是否存在一个从点1到点N,流量为C的流.如果不存在,是否可以恰好修改一条弧的容量,使得存在这样的流? 分析: 先跑一遍最大流,如果最大流大于等于C,则输 ...
- MYSQL 存储过程、函数、临时表、游标
创建函数 因为我们平时经常需要创建不同日期的数据,以模拟的场景,覆盖更多的用例,所以这里写了一个返回随机日期的demo.大家可以自行扩展. DROP FUNCTION IF EXISTS milan_ ...
- 基于Mybatis分页插件PageHelper
基于Mybatis分页插件PageHelper 1.分页插件使用 1.POM依赖 PageHelper的依赖如下.需要新的版本可以去maven上自行选择 <!-- PageHelper 插件分页 ...
- 各种异常 及异常类和Object类 Math类
Day05 异常 Object类 equals方法,用于比较两个对象是否相同,它其实就是使用两个对象的内存地址在比较.Object类中的equals方法内部使用的就是==比较运算符. 2. 描述人这个 ...
- nginx相关教程
1.nginx简易的教程 http://www.cnblogs.com/jingmoxukong/p/5945200.html#%E8%B7%A8%E5%9F%9F%E8%A7%A3%E5%86%B3 ...
- css中calc()的使用
calc()是css3中新出现的特性,可以用于动态计算,非常方便. 首先是兼容性 再来看看怎么使用 html{ font-size: 20px; } div{ width: calc(50% - 1p ...
- Cw210开发板
达内培训嵌入式开发板 qt + kernel uboot toolchain
- oracle sql 数结构表id降序
UPDATE BAS_ORGANIZATION_TYPE T1SET T1.PARENTID=(select rn from (SELECT id,rownum rn FROM BAS_ORGANIZ ...
- mosquitto配置文件/etc/mosquitto/mosquitto.conf配置参数详细说明
mosquitto配置文件/etc/mosquitto/mosquitto.conf配置参数详细说明 摘自:https://blog.csdn.net/weixin_43025071/article/ ...