TF随笔-7
求平均值的函数
reduce_mean
axis为1表示求行
axis为0表示求列
>>> xxx=tf.constant([[1., 10.],[3.,30.]])
>>> sess.run(xxx)
array([[ 1., 10.],
[ 3., 30.]], dtype=float32)
>>> mymean=tf.reduce_mean(xxx,0)
>>> sess.run(mymean)
array([ 2., 20.], dtype=float32)
>>> mymean=tf.reduce_mean(xxx,1)
>>> sess.run(mymean)
array([ 5.5, 16.5], dtype=float32)
>>>
) ==> [1.5, 1.5]
tf.reduce_mean(x, 1) ==> [1., 2.]
Args:
input_tensor
: The tensor to reduce. Should have numeric type.axis
: The dimensions to reduce. IfNone
(the default), reduces all dimensions.keep_dims
: If true, retains reduced dimensions with length 1.name
: A name for the operation (optional).reduction_indices
: The old (deprecated) name for axis.
tf.pow
pow(
x,
y,
name=None
)
Defined in tensorflow/python/ops/math_ops.py
.
See the guide: Math > Basic Math Functions
Computes the power of one value to another.
Given a tensor x
and a tensor y
, this operation computes \\(x^y\\) for corresponding elements in x
and y
. For example:
# tensor 'x' is [[2, 2], [3, 3]]
# tensor 'y' is [[8, 16], [2, 3]]
tf.pow(x, y) ==> [[256, 65536], [9, 27]]
class tf.train.AdamOptimizer
__init__(learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08, use_locking=False, name='Adam')
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Mon Jul 10 09:35:04 2017 @author: myhaspl@myhaspl.com,http://blog.csdn.net/myhaspl""" import tensorflow as tf import numpy as np batch_size=10 w1=tf.Variable(tf.random_normal([2,3],stddev=1,seed=1)) w2=tf.Variable(tf.random_normal([3,1],stddev=1,seed=1)) x=tf.placeholder(tf.float32,shape=(None,2),name="x") y=tf.placeholder(tf.float32,shape=(None,1),name="y") h=tf.matmul(x,w1) yo=tf.matmul(h,w2) #损失函数计算差异平均值 cross_entropy=tf.reduce_mean(tf.abs(y-yo)) #反向传播 train_step=tf.train.AdamOptimizer().minimize(cross_entropy) #生成200个随机样本 DATASIZE=200 x_=np.random.rand(DATASIZE,2) y_=[[int((x1+x2)>2.5)] for (x1,x2) in x_] with tf.Session() as sess: #初始化变量 init_op=tf.global_variables_initializer() sess.run(init_op) print sess.run(w1) print sess.run(w2) #设定训练轮数 TRAINCOUNT=10000 for i in range(TRAINCOUNT): #每次递进选择一组 start=(i*batch_size) % DATASIZE end=min(start+batch_size,DATASIZE) #开始训练 sess.run(train_step,feed_dict={x:x_[start:end],y:y_[start:end]}) if i%1000==0: total_cross_entropy=sess.run(cross_entropy,feed_dict={x:x_[start:end],y:y_[start:end]}) print("%d 次训练之后,损失:%g"%(i+1,total_cross_entropy)) print(sess.run(w1)) print(sess.run(w2))
[[-0.81131822 1.48459876 0.06532937 -2.4427042 0.0992484 0.59122431]
[ 0.59282297 -2.12292957 -0.72289723 -0.05627038 0.64354479 -0.26432407]]
[[-0.81131822]
[ 1.48459876]
[ 0.06532937]
[-2.4427042 ]
[ 0.0992484 ]
[ 0.59122431]]
1 次训练之后,损失:2.37311
1001 次训练之后,损失:0.587702
2001 次训练之后,损失:0.00187977
3001 次训练之后,损失:0.000224713
4001 次训练之后,损失:0.000245593
5001 次训练之后,损失:0.000837345
6001 次训练之后,损失:0.000561878
7001 次训练之后,损失:0.000521504
8001 次训练之后,损失:0.000369141
9001 次训练之后,损失:2.88023e-05
[[-0.40749896 0.74481744 -1.35231423 -1.57555723 1.5161525 0.38725093]
[ 0.84865922 -2.07912779 -0.41053897 -0.21082011 -0.0567192 -0.69210052]]
[[ 0.36143586]
[ 0.34388798]
[ 0.79891819]
[-1.57640576]
[-0.86542428]
[-0.51558757]]
tf.nn.relu
relu(
features,
name=None
)
Defined in tensorflow/python/ops/gen_nn_ops.py
.
See the guides: Layers (contrib) > Higher level ops for building neural network layers, Neural Network > Activation Functions
Computes rectified linear: max(features, 0)
TF随笔-7的更多相关文章
- TF随笔-13
import tensorflow as tf a=tf.constant(5) b=tf.constant(3) res1=tf.divide(a,b) res2=tf.div(a,b) with ...
- TF随笔-11
#!/usr/bin/env python2 # -*- coding: utf-8 -*- import tensorflow as tf my_var=tf.Variable(0.) step=t ...
- TF随笔-10
#!/usr/bin/env python# -*- coding: utf-8 -*-import tensorflow as tf x = tf.constant(2)y = tf.constan ...
- TF随笔-9
计算累加 #!/usr/bin/env python2 # -*- coding: utf-8 -*-"""Created on Mon Jul 24 08:25:41 ...
- TF随笔-8
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Mon Jul 10 09:35:04 201 ...
- tf随笔-6
import tensorflow as tfx=tf.constant([-0.2,0.5,43.98,-23.1,26.58])y=tf.clip_by_value(x,1e-10,1.0)ses ...
- tf随笔-5
# -*- coding: utf-8 -*-import tensorflow as tfw1=tf.Variable(tf.random_normal([2,6],stddev=1))w2=tf. ...
- TF随笔-4
>>> import tensorflow as tf>>> a=tf.constant([[1,2],[3,4]])>>> b=tf.const ...
- TF随笔-3
>>> import tensorflow as tf>>> node1 = tf.constant(3.0, dtype=tf.float32)>>& ...
随机推荐
- 20145322第一次JAVA实验报告
20145322第一周JAVA实验报告 课程:Java程序设计 班级:1453 指导教师:娄嘉鹏 实验名称:Java开发环境的熟悉(Linux + Eclipse) 实验日期:2016.04.08 实 ...
- C语言string.h常用函数总结
void *memcpy(void *dest, const void *src, size_t n); 从源src所指的内存地址的起始位置开始拷贝n个字节到目标dest所指的内存地址的起始位置中. ...
- JavaScript的this指针到底指向哪?
编程过程中,着实十分困扰this的指向性,经过查阅一番资料,终于搞清楚了,在这里总结一下,全文分为以下三个部分: 什么是this指针? this指针指向哪里? 何时使用this? 一 什么是this指 ...
- 解读:Hadoop Archive
hdfs并不擅长存储小文件,因为每个文件最少一个block,每个block的元数据都会在NameNode中占用150byte内存.如果存储大量的小文件,它们会吃掉NameNode节点的大量内存.MR案 ...
- Graph_Master(连通分量_C_Trajan缩点+最小路径覆盖)
hdu_3861 题目大意:给定一张有向图,若<u,v>可达(u可以走到v,或者 v可以走到u),则<u,v>需被划分在统一城邦,问最小划分城邦数. 题解:比较裸的题,可以看出 ...
- 【Semantic Segmentation】DeepLab V3(转)
原文地址:DeepLabv3 代码: TensorFlow Abstract DeepLabv3进一步探讨空洞卷积,这是一个在语义分割任务中:可以调整滤波器视野.控制卷积神经网络计算的特征响应分辨率的 ...
- ABP 源码分析汇总之 IOC
IOC的优点: 1. 依赖接口,而非实现,如下代码, 这样的好处就是,客户端根本不知道PersonService的存在,如果我们换一下IPersonService的实现,客户端不用任何修改, 说的简单 ...
- C#之多线程
多线程在C#中使用得非常频繁,线程之间的充分利用显得尤为重要,一般的写法都是得不到充分利用资源,本人针对多线程写了一种方法,可以充分利用资源,保证每次同时启动10条线程,现在执行完马上再启动一条,总之 ...
- Java中子类对象赋值给父类变量
1. 在Java中将一个字类对象赋值给父类变量是合法的,这也是实现多态(即方法的动态分派)的前提条件之一. 2. 在Java中父类赋值同样也适用于数组.可以将一个子类数组赋值给一个父类数组变量.但可能 ...
- 重新学习MySQL数据库6:浅谈MySQL的中事务与锁
『浅入深出』MySQL 中事务的实现 在关系型数据库中,事务的重要性不言而喻,只要对数据库稍有了解的人都知道事务具有 ACID 四个基本属性,而我们不知道的可能就是数据库是如何实现这四个属性的:在这篇 ...