求平均值的函数

reduce_mean

axis为1表示求行
axis为0表示求列

>>> xxx=tf.constant([[1., 10.],[3.,30.]])
>>> sess.run(xxx)
array([[  1.,  10.],
       [  3.,  30.]], dtype=float32)
>>> mymean=tf.reduce_mean(xxx,0)
>>> sess.run(mymean)
array([  2.,  20.], dtype=float32)
>>> mymean=tf.reduce_mean(xxx,1)
>>> sess.run(mymean)
array([  5.5,  16.5], dtype=float32)
>>> 

) ==> [1.5, 1.5]
tf.reduce_mean(x, 1) ==> [1.,  2.]

Args:

  • input_tensor: The tensor to reduce. Should have numeric type.
  • axis: The dimensions to reduce. If None (the default), reduces all dimensions.
  • keep_dims: If true, retains reduced dimensions with length 1.
  • name: A name for the operation (optional).
  • reduction_indices: The old (deprecated) name for axis.

tf.pow

pow(
    x,
    y,
    name=None
)

Defined in tensorflow/python/ops/math_ops.py.

See the guide: Math > Basic Math Functions

Computes the power of one value to another.

Given a tensor x and a tensor y, this operation computes \\(x^y\\) for corresponding elements in x and y. For example:

# tensor 'x' is [[2, 2], [3, 3]]
# tensor 'y' is [[8, 16], [2, 3]]
tf.pow(x, y) ==> [[256, 65536], [9, 27]]

class tf.train.AdamOptimizer

__init__(learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08, use_locking=False, name='Adam')

线性分类源码:
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Mon Jul 10 09:35:04 2017
@author: myhaspl@myhaspl.com,http://blog.csdn.net/myhaspl"""
import tensorflow as tf
import numpy as np

batch_size=10
w1=tf.Variable(tf.random_normal([2,3],stddev=1,seed=1))
w2=tf.Variable(tf.random_normal([3,1],stddev=1,seed=1))

x=tf.placeholder(tf.float32,shape=(None,2),name="x")
y=tf.placeholder(tf.float32,shape=(None,1),name="y")

h=tf.matmul(x,w1)
yo=tf.matmul(h,w2)

#损失函数计算差异平均值
cross_entropy=tf.reduce_mean(tf.abs(y-yo))
#反向传播
train_step=tf.train.AdamOptimizer().minimize(cross_entropy)

#生成200个随机样本
DATASIZE=200
x_=np.random.rand(DATASIZE,2)
y_=[[int((x1+x2)>2.5)] for (x1,x2) in x_]

with tf.Session() as sess:
    #初始化变量
    init_op=tf.global_variables_initializer()
    sess.run(init_op)
    print sess.run(w1)
    print sess.run(w2)

    #设定训练轮数
    TRAINCOUNT=10000
    for i in range(TRAINCOUNT):
        #每次递进选择一组
        start=(i*batch_size) % DATASIZE
        end=min(start+batch_size,DATASIZE)
        #开始训练
        sess.run(train_step,feed_dict={x:x_[start:end],y:y_[start:end]})
        if i%1000==0:
            total_cross_entropy=sess.run(cross_entropy,feed_dict={x:x_[start:end],y:y_[start:end]})
            print("%d 次训练之后,损失:%g"%(i+1,total_cross_entropy))
    print(sess.run(w1))
    print(sess.run(w2))

[[-0.81131822  1.48459876  0.06532937 -2.4427042   0.0992484   0.59122431]
 [ 0.59282297 -2.12292957 -0.72289723 -0.05627038  0.64354479 -0.26432407]]
[[-0.81131822]
 [ 1.48459876]
 [ 0.06532937]
 [-2.4427042 ]
 [ 0.0992484 ]
 [ 0.59122431]]
1 次训练之后,损失:2.37311
1001 次训练之后,损失:0.587702
2001 次训练之后,损失:0.00187977
3001 次训练之后,损失:0.000224713
4001 次训练之后,损失:0.000245593
5001 次训练之后,损失:0.000837345
6001 次训练之后,损失:0.000561878
7001 次训练之后,损失:0.000521504
8001 次训练之后,损失:0.000369141
9001 次训练之后,损失:2.88023e-05
[[-0.40749896  0.74481744 -1.35231423 -1.57555723  1.5161525   0.38725093]
 [ 0.84865922 -2.07912779 -0.41053897 -0.21082011 -0.0567192  -0.69210052]]
[[ 0.36143586]
 [ 0.34388798]
 [ 0.79891819]
 [-1.57640576]
 [-0.86542428]
 [-0.51558757]]

tf.nn.relu

relu(
    features,
    name=None
)

Defined in tensorflow/python/ops/gen_nn_ops.py.

See the guides: Layers (contrib) > Higher level ops for building neural network layers, Neural Network > Activation Functions

Computes rectified linear: max(features, 0)



TF随笔-7的更多相关文章

  1. TF随笔-13

    import tensorflow as tf a=tf.constant(5) b=tf.constant(3) res1=tf.divide(a,b) res2=tf.div(a,b) with ...

  2. TF随笔-11

    #!/usr/bin/env python2 # -*- coding: utf-8 -*- import tensorflow as tf my_var=tf.Variable(0.) step=t ...

  3. TF随笔-10

    #!/usr/bin/env python# -*- coding: utf-8 -*-import tensorflow as tf x = tf.constant(2)y = tf.constan ...

  4. TF随笔-9

    计算累加 #!/usr/bin/env python2 # -*- coding: utf-8 -*-"""Created on Mon Jul 24 08:25:41 ...

  5. TF随笔-8

    #!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Mon Jul 10 09:35:04 201 ...

  6. tf随笔-6

    import tensorflow as tfx=tf.constant([-0.2,0.5,43.98,-23.1,26.58])y=tf.clip_by_value(x,1e-10,1.0)ses ...

  7. tf随笔-5

    # -*- coding: utf-8 -*-import tensorflow as tfw1=tf.Variable(tf.random_normal([2,6],stddev=1))w2=tf. ...

  8. TF随笔-4

    >>> import tensorflow as tf>>> a=tf.constant([[1,2],[3,4]])>>> b=tf.const ...

  9. TF随笔-3

    >>> import tensorflow as tf>>> node1 = tf.constant(3.0, dtype=tf.float32)>>& ...

随机推荐

  1. BeanFactory与ApplicationContext

    本文总结自:https://www.cnblogs.com/xiaoxi/p/5846416.html 我们常说的Spring容器(即Spring Ioc 容器),是如何创建bean的? BeanFa ...

  2. 20145307《信息安全系统设计基础》第五周学习总结PT2

    20145307<信息安全系统设计基础>第五周学习总结PT2: 教材学习内容总结 之前有第一部分学习总结: http://www.cnblogs.com/Jclemo/p/5962219. ...

  3. 20145240《网络对抗》Web安全基础实践

    Web安全基础实践 实验后回答问题 (1)SQL注入攻击原理,如何防御 原理:SQL注入攻击指的是通过构建特殊的输入作为参数传入Web应用程序,而这些输入大都是SQL语法里的一些组合,通过执行SQL语 ...

  4. [BZOJ1217]消防局的设立

    Description 2020年,人类在火星上建立了一个庞大的基地群,总共有n个基地.起初为了节约材料,人类只修建了n-1条道路来 连接这些基地,并且每两个基地都能够通过道路到达,所以所有的基地形成 ...

  5. zip unzip tar 压缩解压

    yum install -y unzip zip    yum安装zip -r mydata.zip mydata    mydata目录压缩为mydata.zipunzip mydata.zip - ...

  6. vue.js的一些事件绑定和表单数据双向绑定

    知识点: v-on:相当于: 例如:v-on:click==@click ,menthods事件绑定 v-on修饰符可以指定键盘事件 v-model进行表单数据的双向绑定 <template&g ...

  7. Leetcode——Third Maximum Number

    Question Given a non-empty array of integers, return the third maximum number in this array. If it d ...

  8. 【cs231n】神经网络学习笔记1

    神经网络推荐博客: 深度学习概述 神经网络基础之逻辑回归 神经网络基础之Python与向量化 浅层神经网络 深层神经网络 前言 首先声明,以下内容绝大部分转自知乎智能单元,他们将官方学习笔记进行了很专 ...

  9. 通过ajax提交到url路由

    $regBoxform.find('button').on('click', function(){ /*通过ajax提交请求*/ $.ajax({ type:'post', /*用post 方式提交 ...

  10. less文件的运行

    例:在任意处创建一个.less文件,比如在桌面2017.06.28文件中创建了一个main.less文件,然后通过命令行编译main.less,步骤: win+R,cmd打开命令面板,切换到main. ...