TF随笔-7
求平均值的函数
reduce_mean
axis为1表示求行
axis为0表示求列
>>> xxx=tf.constant([[1., 10.],[3.,30.]])
>>> sess.run(xxx)
array([[ 1., 10.],
[ 3., 30.]], dtype=float32)
>>> mymean=tf.reduce_mean(xxx,0)
>>> sess.run(mymean)
array([ 2., 20.], dtype=float32)
>>> mymean=tf.reduce_mean(xxx,1)
>>> sess.run(mymean)
array([ 5.5, 16.5], dtype=float32)
>>>
) ==> [1.5, 1.5]
tf.reduce_mean(x, 1) ==> [1., 2.]
Args:
input_tensor
: The tensor to reduce. Should have numeric type.axis
: The dimensions to reduce. IfNone
(the default), reduces all dimensions.keep_dims
: If true, retains reduced dimensions with length 1.name
: A name for the operation (optional).reduction_indices
: The old (deprecated) name for axis.
tf.pow
pow(
x,
y,
name=None
)
Defined in tensorflow/python/ops/math_ops.py
.
See the guide: Math > Basic Math Functions
Computes the power of one value to another.
Given a tensor x
and a tensor y
, this operation computes \\(x^y\\) for corresponding elements in x
and y
. For example:
# tensor 'x' is [[2, 2], [3, 3]]
# tensor 'y' is [[8, 16], [2, 3]]
tf.pow(x, y) ==> [[256, 65536], [9, 27]]
class tf.train.AdamOptimizer
__init__(learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08, use_locking=False, name='Adam')
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Mon Jul 10 09:35:04 2017 @author: myhaspl@myhaspl.com,http://blog.csdn.net/myhaspl""" import tensorflow as tf import numpy as np batch_size=10 w1=tf.Variable(tf.random_normal([2,3],stddev=1,seed=1)) w2=tf.Variable(tf.random_normal([3,1],stddev=1,seed=1)) x=tf.placeholder(tf.float32,shape=(None,2),name="x") y=tf.placeholder(tf.float32,shape=(None,1),name="y") h=tf.matmul(x,w1) yo=tf.matmul(h,w2) #损失函数计算差异平均值 cross_entropy=tf.reduce_mean(tf.abs(y-yo)) #反向传播 train_step=tf.train.AdamOptimizer().minimize(cross_entropy) #生成200个随机样本 DATASIZE=200 x_=np.random.rand(DATASIZE,2) y_=[[int((x1+x2)>2.5)] for (x1,x2) in x_] with tf.Session() as sess: #初始化变量 init_op=tf.global_variables_initializer() sess.run(init_op) print sess.run(w1) print sess.run(w2) #设定训练轮数 TRAINCOUNT=10000 for i in range(TRAINCOUNT): #每次递进选择一组 start=(i*batch_size) % DATASIZE end=min(start+batch_size,DATASIZE) #开始训练 sess.run(train_step,feed_dict={x:x_[start:end],y:y_[start:end]}) if i%1000==0: total_cross_entropy=sess.run(cross_entropy,feed_dict={x:x_[start:end],y:y_[start:end]}) print("%d 次训练之后,损失:%g"%(i+1,total_cross_entropy)) print(sess.run(w1)) print(sess.run(w2))
[[-0.81131822 1.48459876 0.06532937 -2.4427042 0.0992484 0.59122431]
[ 0.59282297 -2.12292957 -0.72289723 -0.05627038 0.64354479 -0.26432407]]
[[-0.81131822]
[ 1.48459876]
[ 0.06532937]
[-2.4427042 ]
[ 0.0992484 ]
[ 0.59122431]]
1 次训练之后,损失:2.37311
1001 次训练之后,损失:0.587702
2001 次训练之后,损失:0.00187977
3001 次训练之后,损失:0.000224713
4001 次训练之后,损失:0.000245593
5001 次训练之后,损失:0.000837345
6001 次训练之后,损失:0.000561878
7001 次训练之后,损失:0.000521504
8001 次训练之后,损失:0.000369141
9001 次训练之后,损失:2.88023e-05
[[-0.40749896 0.74481744 -1.35231423 -1.57555723 1.5161525 0.38725093]
[ 0.84865922 -2.07912779 -0.41053897 -0.21082011 -0.0567192 -0.69210052]]
[[ 0.36143586]
[ 0.34388798]
[ 0.79891819]
[-1.57640576]
[-0.86542428]
[-0.51558757]]
tf.nn.relu
relu(
features,
name=None
)
Defined in tensorflow/python/ops/gen_nn_ops.py
.
See the guides: Layers (contrib) > Higher level ops for building neural network layers, Neural Network > Activation Functions
Computes rectified linear: max(features, 0)
TF随笔-7的更多相关文章
- TF随笔-13
import tensorflow as tf a=tf.constant(5) b=tf.constant(3) res1=tf.divide(a,b) res2=tf.div(a,b) with ...
- TF随笔-11
#!/usr/bin/env python2 # -*- coding: utf-8 -*- import tensorflow as tf my_var=tf.Variable(0.) step=t ...
- TF随笔-10
#!/usr/bin/env python# -*- coding: utf-8 -*-import tensorflow as tf x = tf.constant(2)y = tf.constan ...
- TF随笔-9
计算累加 #!/usr/bin/env python2 # -*- coding: utf-8 -*-"""Created on Mon Jul 24 08:25:41 ...
- TF随笔-8
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Mon Jul 10 09:35:04 201 ...
- tf随笔-6
import tensorflow as tfx=tf.constant([-0.2,0.5,43.98,-23.1,26.58])y=tf.clip_by_value(x,1e-10,1.0)ses ...
- tf随笔-5
# -*- coding: utf-8 -*-import tensorflow as tfw1=tf.Variable(tf.random_normal([2,6],stddev=1))w2=tf. ...
- TF随笔-4
>>> import tensorflow as tf>>> a=tf.constant([[1,2],[3,4]])>>> b=tf.const ...
- TF随笔-3
>>> import tensorflow as tf>>> node1 = tf.constant(3.0, dtype=tf.float32)>>& ...
随机推荐
- BeanFactory与ApplicationContext
本文总结自:https://www.cnblogs.com/xiaoxi/p/5846416.html 我们常说的Spring容器(即Spring Ioc 容器),是如何创建bean的? BeanFa ...
- 20145307《信息安全系统设计基础》第五周学习总结PT2
20145307<信息安全系统设计基础>第五周学习总结PT2: 教材学习内容总结 之前有第一部分学习总结: http://www.cnblogs.com/Jclemo/p/5962219. ...
- 20145240《网络对抗》Web安全基础实践
Web安全基础实践 实验后回答问题 (1)SQL注入攻击原理,如何防御 原理:SQL注入攻击指的是通过构建特殊的输入作为参数传入Web应用程序,而这些输入大都是SQL语法里的一些组合,通过执行SQL语 ...
- [BZOJ1217]消防局的设立
Description 2020年,人类在火星上建立了一个庞大的基地群,总共有n个基地.起初为了节约材料,人类只修建了n-1条道路来 连接这些基地,并且每两个基地都能够通过道路到达,所以所有的基地形成 ...
- zip unzip tar 压缩解压
yum install -y unzip zip yum安装zip -r mydata.zip mydata mydata目录压缩为mydata.zipunzip mydata.zip - ...
- vue.js的一些事件绑定和表单数据双向绑定
知识点: v-on:相当于: 例如:v-on:click==@click ,menthods事件绑定 v-on修饰符可以指定键盘事件 v-model进行表单数据的双向绑定 <template&g ...
- Leetcode——Third Maximum Number
Question Given a non-empty array of integers, return the third maximum number in this array. If it d ...
- 【cs231n】神经网络学习笔记1
神经网络推荐博客: 深度学习概述 神经网络基础之逻辑回归 神经网络基础之Python与向量化 浅层神经网络 深层神经网络 前言 首先声明,以下内容绝大部分转自知乎智能单元,他们将官方学习笔记进行了很专 ...
- 通过ajax提交到url路由
$regBoxform.find('button').on('click', function(){ /*通过ajax提交请求*/ $.ajax({ type:'post', /*用post 方式提交 ...
- less文件的运行
例:在任意处创建一个.less文件,比如在桌面2017.06.28文件中创建了一个main.less文件,然后通过命令行编译main.less,步骤: win+R,cmd打开命令面板,切换到main. ...