bzoj 4332: JSOI2012 分零食 快速傅立叶变换
题目:
Description
同学们依次排成了一列,其中有A位小朋友,有三个共同的欢乐系数O,S和U。如果有一位小朋友得到了x个糖果,那么她的欢乐程度就是\(f(x)=O*x^2+S*x+U\)
现在校长开始分糖果了,一共有M个糖果。有些小朋友可能得不到糖果,对于那些得不到糖果的小朋友来说,欢乐程度就是1。如果一位小朋友得不到糖果,那么在她身后的小朋友们也都得不到糖果。(即这一列得不到糖果的小朋友一定是最后的连续若干位)
所有分糖果的方案都是等概率的。现在问题是:期望情况下,所有小朋友的欢乐程度的乘积是多少?呆呆同学很快就有了一个思路,只要知道总的方案个数T和所有方案下欢乐程度乘积的总和S,就可以得到答案Ans=S/T。现在他已经求出来了T的答案,但是S怎么求呢?他就不知道了。你能告诉他么?
因为答案很大,你只需要告诉他S对P取模后的结果。
题解:
首先这道题我们可以考虑枚举一下有多少人得到了零食
设\(g[i][j]\)表示\(i\)个人里分下去了\(j\)个零食得到的值,n为人数,m为零食数
这样我们有\(ans = \sum_{i=1}^ng[i][m]\)
\(g[i][j]\)的递推我们有
\]
其中\(F(k)\)表示将\(k\)个零食分给一个人得到的权
然后我们惊奇地发现后面的式子是一个卷积的形式
所以我们可以得到\(g_i = g_{i-1}*F\)
由于卷积满足结合律,所以我们有\(g_i = g_0*F^i\)
这样的话我们能够完成\(nlogn\)的单点求值,但是我们要求的是\(g_i\)的一个和
我们把答案\(ans\)拓展为一个多项式\(f(x)\),答案储存在第f(n)的第\(m\)位
则有\(f_n = \sum_{i=1}^{n}g_i\)
然后我们发现:
\]
\]
在继续推导之前首先我们需要证明: \(g_{i+j} = g_i*g_j\)
由\(g_i = g_0*F^i\)可得:\(g_i*g_j = g_0*g_0*F^i*F^j\)
因为:\(g_0*g_0 = g_0\)所以有\(g_0*g_0*F^i*F^j = g_0*F^i*F^j = g_{i+j}\)得证
所以继续上式的推导我们有
\]
我们将卷积的形式再拆解开来:
\]
\]
\]
\]
我们又知道:
\]
所以迭代倍增即可求解
复杂度\(O(nlog^2n)\)
#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
inline void read(int &x){
x=0;char ch;bool flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
const int maxn = 41000;
const double pi = acos(-1);
int mod;
struct complex{
long double x,y;
complex(){x=y=0;}
complex(long double a,long double b){x=a;y=b;}
complex operator + (const complex &r){return complex(x+r.x,y+r.y);}
complex operator - (const complex &r){return complex(x-r.x,y-r.y);}
complex operator * (const complex &r){return complex(x*r.x-y*r.y,x*r.y+y*r.x);}
complex operator / (const long double &r){return complex(x/r,y/r);}
};
inline void FFT(complex *x,int n,int p){
for(int i=0,t=0;i<n;++i){
if(i > t) swap(x[i],x[t]);
for(int j=n>>1;(t^=j) < j;j>>=1);
}
for(int m=2;m<=n;m<<=1){
int k = m>>1;
complex wn(cos(p*2*pi/m),sin(p*2*pi/m));
for(int i=0;i<n;i+=m){
complex w(1,0),u;
for(int j=0;j<k;++j,w=w*wn){
u = x[i+j+k]*w;
x[i+j+k] = x[i+j] - u;
x[i+j] = x[i+j] + u;
}
}
}
if(p == -1 ) for(int i=0;i<n;++i) x[i] = x[i]/n;
}
complex ca[maxn],cb[maxn],cc[maxn];int len,m;
inline int mul(int *a,int *b,int *c){
for(int i=0;i<len;++i){
ca[i] = complex((long double)a[i],0);
cb[i] = complex((long double)b[i],0);
}
FFT(ca,len,1);FFT(cb,len,1);
for(int i=0;i<len;++i) cc[i] = ca[i]*cb[i];
FFT(cc,len,-1);
for(int i=0;i<=m;++i){
c[i] = ((int)floor(cc[i].x + 0.5)) % mod;
}
}
int f[maxn],g[maxn],arr[maxn],tmp[maxn];
inline void qpow(int k){
if(k == 1){
for(int i=0;i<=m;++i) f[i] = g[i] = arr[i];
return ;
}qpow(k>>1);
mul(f,g,tmp);mul(g,g,g);
for(int i=0;i<=m;++i){
f[i] += tmp[i];
if(f[i] >= mod) f[i] -= mod;
}
if(k&1){
mul(g,arr,g);
for(int i=0;i<=m;++i){
f[i] += g[i];
if(f[i] >= mod) f[i] -= mod;
}
}
}
int main(){
read(m);read(mod);
for(len = 1;(len) <= (m<<1);len<<=1);
int n,a,b,c;read(n);read(a);read(b);read(c);
a %= mod;b %= mod;c %= mod;
for(int i=1;i<=m;++i) arr[i] = ((a*i*i % mod) + (b*i % mod) + c) % mod;
qpow(n);printf("%d\n",f[m]);
getchar();getchar();
return 0;
}
bzoj 4332: JSOI2012 分零食 快速傅立叶变换的更多相关文章
- [BZOJ 4332] [JSOI2012]分零食(DP+FFT)
[BZOJ 4332] [JSOI2012]分零食(DP+FFT) 题面 同学们依次排成了一列,其中有A位小朋友,有三个共同的欢乐系数O,S和U.如果有一位小朋友得到了x个糖果,那么她的欢乐程度就是\ ...
- BZOJ 4332: JSOI2012 分零食 FFT+分治
好题好题~ #include <bits/stdc++.h> #define N 50020 #define ll long long #define setIO(s) freopen(s ...
- 【BZOJ 4332】 4332: JSOI2012 分零食 (FFT+快速幂)
4332: JSOI2012 分零食 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 119 Solved: 66 Description 这里是欢乐 ...
- BZOJ 2194 快速傅立叶变换之二 | FFT
BZOJ 2194 快速傅立叶变换之二 题意 给出两个长为\(n\)的数组\(a\)和\(b\),\(c_k = \sum_{i = k}^{n - 1} a[i] * b[i - k]\). 题解 ...
- 为什么要进行傅立叶变换?傅立叶变换究竟有何意义?如何用Matlab实现快速傅立叶变换
写在最前面:本文是我阅读了多篇相关文章后对它们进行分析重组整合而得,绝大部分内容非我所原创.在此向多位原创作者致敬!!!一.傅立叶变换的由来关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶 ...
- 离散傅立叶变换与快速傅立叶变换(DFT与FFT)
自从去年下半年接触三维重构以来,听得最多的词就是傅立叶变换,后来了解到这个变换在图像处理里面也是重点中的重点. 本身自己基于高数知识的理解是傅立叶变换是将一个函数变为一堆正余弦函数的和的变换.而图像处 ...
- 快速傅立叶变换(FFT)算法
已知多项式f(x)=a0+a1x+a2x2+...+am-1xm-1, g(x)=b0+b1x+b2x2+...+bn-1xn-1.利用卷积的蛮力算法,得到h(x)=f(x)g(x),这一过程的时间复 ...
- $\mathcal{FFT}$·$\mathcal{Fast \ \ Fourier \ \ Transformation}$快速傅立叶变换
\(2019.2.18upd:\) \(LINK\) 之前写的比较适合未接触FFT的人阅读--但是有几个地方出了错,大家可以找一下233 啊-本来觉得这是个比较良心的算法没想到这么抽搐这个算法真是将一 ...
- 快速傅立叶变换(FFT)
多项式 系数表示法 设\(f(x)\)为一个\(n-1\)次多项式,则 \(f(x)=\sum\limits_{i=0}^{n-1}a_i*x_i\) 其中\(a_i\)为\(f(x)\)的系数,用这 ...
随机推荐
- HP VC模块Server Profile配置快速参考(With SUS)
以管理员身份登录VCM 准备进行Server Profiles的配置 在左侧导航栏中找到并点击"Server Profiles",在右侧主窗口的左下角点击"Add&quo ...
- Kickstart 安装centos7
以前是怎么安装系统的 光盘(ISO文件,光盘的镜像文件)===>每一台物理机都得给一个光驱,如果用外置光驱的话,是不是每台机器都需要插一下 U盘:ISO镜像刻录到U盘==>需要每台机器都需 ...
- KETTLE监控
kettle单实例环境下自身没有监控工具,但在集群下自带了监控工具. 一.集群自带的监控 kettle自带的集群监控工具可以监控转换的执行情况. 配置好集群后,打开浏览器:输入http://local ...
- PIGCMS 关闭聊天机器人(小黄鸡)
无脑操作举例 1.找到 WeixinAction.class.php 文件,路径: 你的版本\PigCms\Lib\Action\Home 2.查询 function chat ,在 chat() 函 ...
- Week4_Linux书本一二两章
第一章的学习内容就是对Linux内核有一个基本的了解,同时知道一些关于Linux的知识. 学习Linux,可以自己有一台装有Linux操作系统的机器,源代码的作用无可替代: Linux发展历程简介:L ...
- Python语言基础
一.Python简介 Python是跨平台动态语言 特点:优雅.明确.简单 适用:web网站和网络服务:系统工具和脚步:包装其他语言开发的模块 不适用:贴近硬件(首选C):移动开发:IOS/Andro ...
- 使用C和C++实现“电梯”的区别
C 面向过程: 该电梯不允许未卜先知,故程序需逐条处理乘客请求并更新当前各变量状态. 如何获得最短时间:是否立即响应请求,计算出不同决策下的总时间,并进行比较,然后选择最短时间 ...
- (一)java数据类型图
┏数值型━┳━整数型:byte short int long ┏基本数据类型━━┫ ┗━浮点型:float double ...
- nginx 几个常用的标准模块介绍
ngx_http_ssl_module(https) 1:指明是否启用的虚拟主机的ssl功能 ssl on | off; 2:指明虚拟主机使用的证书文件 ssl_certificate /usr/lo ...
- 1029 C语言文法定义
program à external_declaration | program external_declaration <源程序> -> <外部声明> | < ...