题目:

Description

同学们依次排成了一列,其中有A位小朋友,有三个共同的欢乐系数O,S和U。如果有一位小朋友得到了x个糖果,那么她的欢乐程度就是\(f(x)=O*x^2+S*x+U\)

现在校长开始分糖果了,一共有M个糖果。有些小朋友可能得不到糖果,对于那些得不到糖果的小朋友来说,欢乐程度就是1。如果一位小朋友得不到糖果,那么在她身后的小朋友们也都得不到糖果。(即这一列得不到糖果的小朋友一定是最后的连续若干位)

所有分糖果的方案都是等概率的。现在问题是:期望情况下,所有小朋友的欢乐程度的乘积是多少?呆呆同学很快就有了一个思路,只要知道总的方案个数T和所有方案下欢乐程度乘积的总和S,就可以得到答案Ans=S/T。现在他已经求出来了T的答案,但是S怎么求呢?他就不知道了。你能告诉他么?

因为答案很大,你只需要告诉他S对P取模后的结果。

题解:

首先这道题我们可以考虑枚举一下有多少人得到了零食

设\(g[i][j]\)表示\(i\)个人里分下去了\(j\)个零食得到的值,n为人数,m为零食数

这样我们有\(ans = \sum_{i=1}^ng[i][m]\)

\(g[i][j]\)的递推我们有

\[g[i][j] = \sum_{k=1}^{j-1}g[i-1][j-k]*F(k)
\]

其中\(F(k)\)表示将\(k\)个零食分给一个人得到的权

然后我们惊奇地发现后面的式子是一个卷积的形式

所以我们可以得到\(g_i = g_{i-1}*F\)

由于卷积满足结合律,所以我们有\(g_i = g_0*F^i\)

这样的话我们能够完成\(nlogn\)的单点求值,但是我们要求的是\(g_i\)的一个和

我们把答案\(ans\)拓展为一个多项式\(f(x)\),答案储存在第f(n)的第\(m\)位

则有\(f_n = \sum_{i=1}^{n}g_i\)

然后我们发现:

\[f_n = f_{\frac{n}{2}} + \sum_{i=\frac{n}{2}+1}^{n}g_i
\]

\[f_n = f_{\frac{n}{2}} + \sum_{i=1}^{\frac{n}{2}}g_{\frac{n}{2}+i}
\]

在继续推导之前首先我们需要证明: \(g_{i+j} = g_i*g_j\)

由\(g_i = g_0*F^i\)可得:\(g_i*g_j = g_0*g_0*F^i*F^j\)

因为:\(g_0*g_0 = g_0\)所以有\(g_0*g_0*F^i*F^j = g_0*F^i*F^j = g_{i+j}\)得证

所以继续上式的推导我们有

\[f_n = f_{\frac{n}{2}} + \sum_{i=1}^{\frac{n}{2}}g_{\frac{n}{2}}*g_i
\]

我们将卷积的形式再拆解开来:

\[f_n = f_{\frac{n}{2}} + \sum_{i=1}^{\frac{n}{2}}\sum_{j=1}^{m-1}g_{\frac{n}{2},m-j}*g_{i,j}
\]

\[f_n = f_{\frac{n}{2}} + \sum_{j=1}^{m-1}g_{\frac{n}{2},m-j}*\sum_{i=1}^{\frac{n}{2}}g_{i,j}
\]

\[f_n = f_{\frac{n}{2}} + \sum_{j=1}^{m-1}g_{\frac{n}{2},m-j}*f_{\frac{n}{2},j}
\]

\[f_n = f_{\frac{n}{2}} + g_{\frac{n}{2}}*f_{\frac{n}{2}}
\]

我们又知道:

\[g_n = g_{\frac{n}{2}}*g_{\frac{n}{2}}
\]

所以迭代倍增即可求解

复杂度\(O(nlog^2n)\)

#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
inline void read(int &x){
x=0;char ch;bool flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
const int maxn = 41000;
const double pi = acos(-1);
int mod;
struct complex{
long double x,y;
complex(){x=y=0;}
complex(long double a,long double b){x=a;y=b;}
complex operator + (const complex &r){return complex(x+r.x,y+r.y);}
complex operator - (const complex &r){return complex(x-r.x,y-r.y);}
complex operator * (const complex &r){return complex(x*r.x-y*r.y,x*r.y+y*r.x);}
complex operator / (const long double &r){return complex(x/r,y/r);}
};
inline void FFT(complex *x,int n,int p){
for(int i=0,t=0;i<n;++i){
if(i > t) swap(x[i],x[t]);
for(int j=n>>1;(t^=j) < j;j>>=1);
}
for(int m=2;m<=n;m<<=1){
int k = m>>1;
complex wn(cos(p*2*pi/m),sin(p*2*pi/m));
for(int i=0;i<n;i+=m){
complex w(1,0),u;
for(int j=0;j<k;++j,w=w*wn){
u = x[i+j+k]*w;
x[i+j+k] = x[i+j] - u;
x[i+j] = x[i+j] + u;
}
}
}
if(p == -1 ) for(int i=0;i<n;++i) x[i] = x[i]/n;
}
complex ca[maxn],cb[maxn],cc[maxn];int len,m;
inline int mul(int *a,int *b,int *c){
for(int i=0;i<len;++i){
ca[i] = complex((long double)a[i],0);
cb[i] = complex((long double)b[i],0);
}
FFT(ca,len,1);FFT(cb,len,1);
for(int i=0;i<len;++i) cc[i] = ca[i]*cb[i];
FFT(cc,len,-1);
for(int i=0;i<=m;++i){
c[i] = ((int)floor(cc[i].x + 0.5)) % mod;
}
}
int f[maxn],g[maxn],arr[maxn],tmp[maxn];
inline void qpow(int k){
if(k == 1){
for(int i=0;i<=m;++i) f[i] = g[i] = arr[i];
return ;
}qpow(k>>1);
mul(f,g,tmp);mul(g,g,g);
for(int i=0;i<=m;++i){
f[i] += tmp[i];
if(f[i] >= mod) f[i] -= mod;
}
if(k&1){
mul(g,arr,g);
for(int i=0;i<=m;++i){
f[i] += g[i];
if(f[i] >= mod) f[i] -= mod;
}
}
}
int main(){
read(m);read(mod);
for(len = 1;(len) <= (m<<1);len<<=1);
int n,a,b,c;read(n);read(a);read(b);read(c);
a %= mod;b %= mod;c %= mod;
for(int i=1;i<=m;++i) arr[i] = ((a*i*i % mod) + (b*i % mod) + c) % mod;
qpow(n);printf("%d\n",f[m]);
getchar();getchar();
return 0;
}

bzoj 4332: JSOI2012 分零食 快速傅立叶变换的更多相关文章

  1. [BZOJ 4332] [JSOI2012]分零食(DP+FFT)

    [BZOJ 4332] [JSOI2012]分零食(DP+FFT) 题面 同学们依次排成了一列,其中有A位小朋友,有三个共同的欢乐系数O,S和U.如果有一位小朋友得到了x个糖果,那么她的欢乐程度就是\ ...

  2. BZOJ 4332: JSOI2012 分零食 FFT+分治

    好题好题~ #include <bits/stdc++.h> #define N 50020 #define ll long long #define setIO(s) freopen(s ...

  3. 【BZOJ 4332】 4332: JSOI2012 分零食 (FFT+快速幂)

    4332: JSOI2012 分零食 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 119  Solved: 66 Description 这里是欢乐 ...

  4. BZOJ 2194 快速傅立叶变换之二 | FFT

    BZOJ 2194 快速傅立叶变换之二 题意 给出两个长为\(n\)的数组\(a\)和\(b\),\(c_k = \sum_{i = k}^{n - 1} a[i] * b[i - k]\). 题解 ...

  5. 为什么要进行傅立叶变换?傅立叶变换究竟有何意义?如何用Matlab实现快速傅立叶变换

    写在最前面:本文是我阅读了多篇相关文章后对它们进行分析重组整合而得,绝大部分内容非我所原创.在此向多位原创作者致敬!!!一.傅立叶变换的由来关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶 ...

  6. 离散傅立叶变换与快速傅立叶变换(DFT与FFT)

    自从去年下半年接触三维重构以来,听得最多的词就是傅立叶变换,后来了解到这个变换在图像处理里面也是重点中的重点. 本身自己基于高数知识的理解是傅立叶变换是将一个函数变为一堆正余弦函数的和的变换.而图像处 ...

  7. 快速傅立叶变换(FFT)算法

    已知多项式f(x)=a0+a1x+a2x2+...+am-1xm-1, g(x)=b0+b1x+b2x2+...+bn-1xn-1.利用卷积的蛮力算法,得到h(x)=f(x)g(x),这一过程的时间复 ...

  8. $\mathcal{FFT}$·$\mathcal{Fast \ \ Fourier \ \ Transformation}$快速傅立叶变换

    \(2019.2.18upd:\) \(LINK\) 之前写的比较适合未接触FFT的人阅读--但是有几个地方出了错,大家可以找一下233 啊-本来觉得这是个比较良心的算法没想到这么抽搐这个算法真是将一 ...

  9. 快速傅立叶变换(FFT)

    多项式 系数表示法 设\(f(x)\)为一个\(n-1\)次多项式,则 \(f(x)=\sum\limits_{i=0}^{n-1}a_i*x_i\) 其中\(a_i\)为\(f(x)\)的系数,用这 ...

随机推荐

  1. Mybatis-Plus的填坑之路 - Lynwood/wunian7yulian

    目录 Mybatis-Plus 我来填坑~ 目录 一.简单介绍 官方说明 : 成绩: 最新版本: 开发层面MyBatis-Plus特色 Mybatis-Plus中的Plus 二.MP的特性 三.MP框 ...

  2. Parcel 打包器简单使用记录

    本文是构造 UI 轮子过程中搭建项目初始化时使用 Parcel 作为打包器的简要使用记录. 安装 参考 官方文档 使用 npm 进行 parcel-bundler 的安装. npm i -D parc ...

  3. 【python 3.6】python读取json数据存入MySQL(一)

    整体思路: 1,读取json文件 2,将数据格式化为dict,取出key,创建数据库表头 3,取出dict的value,组装成sql语句,循环执行 4,执行SQL语句 #python 3.6 # -* ...

  4. Could not resolve placeholder 'jdbc.url' in value "${jdbc.url}"

    写完接口之后,发现报了这个错误,查了一下发现,spring不允许使用两个 <context:property-placeholder>

  5. New York Comic Con 2013 - 2013年纽约动漫展

    New York Comic Con - 2013年纽约动漫展 New York Comic Con is the largest pop culture event on the East Coas ...

  6. hadoop Datanode Uuid unassigned

    在配置hadoop的hdfs的时候,要首先格式化,然后才能启动,但是格式化的方式有的是不对出现Initialization failed for Block pool <registering& ...

  7. react native基础与入门

    react native基础与入门 一.react native 的优点 1.跨平台(一才两用) 2.低投入高回报 (开发成本低.代码复用率高) 3.性能高:拥有独立的js渲染引擎,比传统的h5+ w ...

  8. 第18次Scrum会议(10/30)【欢迎来怼】

    一.小组信息 队名:欢迎来怼小组成员队长:田继平成员:李圆圆,葛美义,王伟东,姜珊,邵朔,冉华 小组照片 二.开会信息 时间:2017/10/30 17:19~17:38,总计19min.地点:东北师 ...

  9. 《C》变量

    变量的存储方式和生存周期

  10. s2sh乱码一个小处理(新手按流程走)

    解决乱码几小点: 1.配置过滤器,可以选择自己写,既然你用的SSH框架就更简单了,直接用Spring的过滤器,web.xml里配置一下即可. 2.Jsp页面设置编码,所有地方都要相同,我习惯用GBK ...