CodeForces 834D The Bakery(线段树优化DP)
Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought required ingredients and a wonder-oven which can bake several types of cakes, and opened the bakery.
Soon the expenses started to overcome the income, so Slastyona decided to study the sweets market. She learned it's profitable to pack cakes in boxes, and that the more distinct cake types a box contains (let's denote this number as the value of the box), the higher price it has.
She needs to change the production technology! The problem is that the oven chooses the cake types on its own and Slastyona can't affect it. However, she knows the types and order of n cakes the oven is going to bake today. Slastyona has to pack exactly k boxes with cakes today, and she has to put in each box several (at least one) cakes the oven produced one right after another (in other words, she has to put in a box a continuous segment of cakes).
Slastyona wants to maximize the total value of all boxes with cakes. Help her determine this maximum possible total value.
Input
The first line contains two integers n and k (1 ≤ n ≤ 35000, 1 ≤ k ≤ min(n, 50)) – the number of cakes and the number of boxes, respectively.
The second line contains n integers a1, a2, ..., an (1 ≤ ai ≤ n) – the types of cakes in the order the oven bakes them.
Output
Print the only integer – the maximum total value of all boxes with cakes.
Examples
input
4 1
1 2 2 1
output
2
input
7 2
1 3 3 1 4 4 4
output
5
input
8 3
7 7 8 7 7 8 1 7
output
6
Note
In the first example Slastyona has only one box. She has to put all cakes in it, so that there are two types of cakes in the box, so the value is equal to 2.
In the second example it is profitable to put the first two cakes in the first box, and all the rest in the second. There are two distinct types in the first box, and three in the second box then, so the total value is 5.
题意:给出一个数组,将数组分割成k份,使每份中不同数字的个数加起来最大,输出这个最大值
题解:这道题很好列出状态转移方程,dp[i][j]=max{dp[k][j-1]+cnt[k+1][i]}
dp[i][j]意为1~i之间分割j次所产生的最大值。cnt[i][j]表示i-j之间不同的颜色个数。
看到max可以考虑线段树优化,也就是如果我们有办法在O(logn)的时间内计算出cnt[i][j]的值就可以了,考虑一种颜色能够产生贡献的范围,为他上一次出现的位置到他当前的位置,产生贡献为1,可以使用线段树区间加,给pre[i]~i都加上1,从1到n进行枚举,逐渐进行上面的操作,每次换下一层的时候重构线段树,这样计算cnt[i][j]的复杂度就变成了logn的
代码如下:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define lson root<<1
#define rson root<<1|1
using namespace std; struct node
{
int l,r,sum,lazy;
}tr[];
int dp[][],pre[],pos[]; void init()
{
memset(tr,,sizeof(tr));
} void push_up(int root)
{
tr[root].sum=max(tr[lson].sum,tr[rson].sum);
} void push_down(int root)
{
tr[lson].sum+=tr[root].lazy;
tr[lson].lazy+=tr[root].lazy;
tr[rson].sum+=tr[root].lazy;
tr[rson].lazy+=tr[root].lazy;
tr[root].lazy=;
} void build(int root,int l,int r,int now)
{
if(l==r)
{
tr[root].l=l;
tr[root].r=r;
tr[root].sum=dp[now][l-];
return ;
}
tr[root].l=l;
tr[root].r=r;
int mid=(l+r)>>;
build(lson,l,mid,now);
build(rson,mid+,r,now);
push_up(root);
} void update(int root,int l,int r,int val)
{
if(tr[root].l==l&&tr[root].r==r)
{
tr[root].sum+=val;
tr[root].lazy+=val;
return ;
}
if(tr[root].lazy)
{
push_down(root);
}
int mid=(tr[root].l+tr[root].r)>>;
if(mid<l)
{
update(rson,l,r,val);
}
else
{
if(mid>=r)
{
update(lson,l,r,val);
}
else
{
update(lson,l,mid,val);
update(rson,mid+,r,val);
}
}
push_up(root);
} int query(int root,int l,int r)
{
if(tr[root].l==l&&tr[root].r==r)
{
return tr[root].sum;
}
if(tr[root].lazy)
{
push_down(root);
}
int mid=(tr[root].l+tr[root].r)>>;
if(mid<l)
{
return query(rson,l,r);
}
else
{
if(mid>=r)
{
return query(lson,l,r);
}
else
{
return max(query(lson,l,mid),query(rson,mid+,r));
}
}
} int main()
{
int n,k,t;
scanf("%d%d",&n,&k);
for(int i=;i<=n;i++)
{
scanf("%d",&t);
pre[i]=pos[t]+;
pos[t]=i;
}
for(int i=;i<=k;i++)
{
init();
build(,,n,i-);
for(int j=;j<=n;j++)
{
update(,pre[j],j,);
dp[i][j]=query(,,j);
}
}
printf("%d\n",dp[k][n]);
}
CodeForces 834D The Bakery(线段树优化DP)的更多相关文章
- Codeforces Round #426 (Div. 2) D. The Bakery 线段树优化DP
D. The Bakery Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought req ...
- D - The Bakery CodeForces - 834D 线段树优化dp···
D - The Bakery CodeForces - 834D 这个题目好难啊,我理解了好久,都没有怎么理解好, 这种线段树优化dp,感觉还是很难的. 直接说思路吧,说不清楚就看代码吧. 这个题目转 ...
- Codeforces Round #426 (Div. 2) D 线段树优化dp
D. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...
- Codeforces 1603D - Artistic Partition(莫反+线段树优化 dp)
Codeforces 题面传送门 & 洛谷题面传送门 学 whk 时比较无聊开了道题做做发现是道神题( 介绍一种不太一样的做法,不观察出决策单调性也可以做. 首先一个很 trivial 的 o ...
- CF833B The Bakery 线段树,DP
CF833B The Bakery LG传送门 线段树优化DP. 其实这是很久以前就应该做了的一道题,由于颓废一直咕在那里,其实还是挺不错的一道题. 先考虑\(O(n^2k)\)做法:设\(f[i][ ...
- [Codeforces 1197E]Culture Code(线段树优化建图+DAG上最短路)
[Codeforces 1197E]Culture Code(线段树优化建图+DAG上最短路) 题面 有n个空心物品,每个物品有外部体积\(out_i\)和内部体积\(in_i\),如果\(in_i& ...
- BZOJ2090: [Poi2010]Monotonicity 2【线段树优化DP】
BZOJ2090: [Poi2010]Monotonicity 2[线段树优化DP] Description 给出N个正整数a[1..N],再给出K个关系符号(>.<或=)s[1..k]. ...
- [AGC011F] Train Service Planning [线段树优化dp+思维]
思路 模意义 这题真tm有意思 我上下楼梯了半天做出来的qwq 首先,考虑到每K分钟有一辆车,那么可以把所有的操作都放到模$K$意义下进行 这时,我们只需要考虑两边的两辆车就好了. 定义一些称呼: 上 ...
- 【bzoj3939】[Usaco2015 Feb]Cow Hopscotch 动态开点线段树优化dp
题目描述 Just like humans enjoy playing the game of Hopscotch, Farmer John's cows have invented a varian ...
随机推荐
- Apache 的编译安装
直接看步骤: 1.安装必备环境:gcc.pcre .................................. 2.安装apr.apr-util 3.解压编译安装Apache: ./confi ...
- angualr 之 $$phase
对于angular, $$phase 是 作为angular 内部状态表示位,用来标示当前是处于哪个阶段. 用有的阶段有 $digest $apply 在使用的是例如你想调用scope.$apply的 ...
- 用户从手机的浏览器访问www.baidu.com,看到的可能跟桌面PC电脑,是不太一样的网页效果,会更适合移动设备使用。请简要分析一下,实现这种网页区分显示的原因及技术原理。
手机的网速问题.屏幕大小.内存.CPU等.通过不同设备的特征,实现不同的网页展现或输出效果.根据useragent.屏幕大小信息.IP.网速.css media Query等原理,实现前端或后端的特征 ...
- touch python
一 使用while循环输出 1 2 3 4 5 6 8 9 10. i=0 while i<10: i=i+1 if i == 7: continue print(i) 二 求 1-100所 ...
- Android屏幕录制
自己实现了Android的屏幕录制App. 用了MediaProjection类来作为源,MediaRecoder来捕捉,编码转换为本地视频. 效果图: 主要是这段代码开始录像: startActiv ...
- 我的Linux之路——虚拟机linux与主机之间的文件传送
出自:https://jingyan.baidu.com/article/d169e186a00422436711d872.html FTP工具或者FTP命令(put.get) 常用的工具如:Xftp ...
- CentOS 安装python3.5
1.刚开始centos可能会缺少gcc等组件,先安装组件 yum groupinstall "Development Tools" 2.下载源码,解压后进入目录 #下载地址http ...
- spring中bean 的属性id与name
- glTexGen
[glTexGen] Rather than having to explicitly provide a texture coordinate for each vertex, we can use ...
- 第一个MFC实例:计算圆周长和圆面积
一.基于Microsoft MFC的编程方法 MFC是微软基础类库(Microsoft Foundation Class)的缩写.与API不同,MFC不是Windows操作系统的组成部分,而是微软公司 ...