题目链接:hdu 4983 Goffi and GCD

题目大意:求有多少对元组满足题目中的公式。

解题思路:

  • n = 1或者k=2时:答案为1
  • k > 2时:答案为0(n≠1)
  • k = 1时:须要计算,枚举n的因子。令因子k=gcd(n−a,n,
    那么还有一边的gcd(n−b,n)=nk才干满足相乘等n。满足k=gcd(n−a,n)的a的个数即为ϕ(n/s),欧拉有o(n‾‾√的算法
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm> using namespace std;
const int maxn = 1e5;
const int MOD = 1e9+7;
typedef long long ll; ll ans;
int N, K, M;
int np, pri[maxn+5], vis[maxn+5];
int nf, fact[maxn+5], coun[maxn+5]; void prime_table (int n) {
np = 0;
memset(vis, 0, sizeof(vis)); for (int i = 2; i <= n; i++) {
if (vis[i])
continue;
pri[np++] = i;
for (int j = 2 * i; j <= n; j += i)
vis[j] = 1;
}
} void div_factor(int n) {
nf = 0;
for (int i = 0; i < np; i++) {
if (n % pri[i] == 0) {
coun[nf] = 0;
while (n % pri[i] == 0) {
coun[nf]++;
n /= pri[i];
}
fact[nf++] = pri[i];
}
} if (n != 1) {
coun[nf] = 1;
fact[nf++] = n;
}
} int euler_phi(int n) {
int m = (int)sqrt((double)n+0.5);
int ret = n;
for (int i = 2; i <= m; i++) {
if (n % i == 0) {
ret = ret / i * (i-1);
while (n%i==0)
n /= i;
}
} if (n > 1)
ret = ret / n * (n - 1);
return ret;
} ll add (int s) {
ll a = euler_phi(N/s);
ll b = euler_phi(s);
ll ret = a * b * 2; if (s == N / s)
ret /= 2;
return ret;
} void dfs (int s, int d) {
if (s > M)
return; if (d == nf) {
ans = (ans + add(s)) % MOD;
return;
} for (int i = 0; i <= coun[d]; i++) {
dfs(s, d+1);
s *= fact[d];
}
} int solve () {
ans = 0;
M = (int)sqrt((double)N);
div_factor(N);
dfs (1, 0);
return ans % MOD;
} int main () {
prime_table(maxn);
while (scanf("%d%d", &N, &K) == 2) {
if (N == 1)
printf("1\n");
else if (K > 2)
printf("0\n");
else if (K == 2)
printf("1\n");
else
printf("%d\n", solve());
}
return 0;
}

hdu 4983 Goffi and GCD(数论)的更多相关文章

  1. HDU 4983 Goffi and GCD(数论)

    HDU 4983 Goffi and GCD 思路:数论题.假设k为2和n为1.那么仅仅可能1种.其它的k > 2就是0种,那么事实上仅仅要考虑k = 1的情况了.k = 1的时候,枚举n的因子 ...

  2. hdu 4983 Goffi and GCD(欧拉函数)

    Problem Description Goffi is doing his math homework and he finds an equality on his text book: gcd( ...

  3. HDU 4983 Goffi and GCD

    题目大意:给你N和K,问有多少个数对满足gcd(N-A,N)*gcd(N-B,N)=N^K.题解:由于 gcd(a, N) <= N,于是 K>2 都是无解,K=2 只有一个解 A=B=N ...

  4. 【HDOJ】4983 Goffi and GCD

    题意说的非常清楚,即求满足gcd(n-a, n)*gcd(n-b, n) = n^k的(a, b)的不同对数.显然gcd(n-a, n)<=n, gcd(n-b, n)<=n.因此当n不为 ...

  5. HDU 4981 Goffi and Median(水)

    HDU 4981 Goffi and Median 思路:排序就能够得到中间数.然后总和和中间数*n比較一下就可以 代码: #include <cstdio> #include <c ...

  6. HDU 4982 Goffi and Squary Partition(推理)

    HDU 4982 Goffi and Squary Partition 思路:直接从全然平方数往下找,然后推断是否能构造出该全然平方数,假设能够就是yes,假设都不行就是no.注意构造时候的推断,因为 ...

  7. hdu 5869 区间不同GCD个数(树状数组)

    Different GCD Subarray Query Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65536/65536 K ( ...

  8. hdu 5656 CA Loves GCD(n个任选k个的最大公约数和)

    CA Loves GCD  Accepts: 64  Submissions: 535  Time Limit: 6000/3000 MS (Java/Others)  Memory Limit: 2 ...

  9. Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论

    Bash and a Tough Math Puzzle CodeForces 914D 线段树+gcd数论 题意 给你一段数,然后小明去猜某一区间内的gcd,这里不一定是准确值,如果在这个区间内改变 ...

随机推荐

  1. ls 大全

    ls命令是linux下最常用的命令.ls命令就是list的缩写缺省下ls用来打印出当前目录的清单如果ls指定其他目录那么就会显示指定目录里的文件及文件夹清单. 通过ls 命令不仅可以查看linu ...

  2. cloudstack ssvm 管理地址不够造成无法启动修复过程

    cloudstack日志记录: 上面已经提示了,管理ip没有了,造成这个原因很多,遇到过ssvm非正常关闭就有可能不释放IP慢慢把IP消耗掉.总之这肯定是BUG.按照上面的提示找到对应pod 和dc ...

  3. 「SCOI2015」情报传递

    「SCOI2015」情报传递 题目描述 奈特公司是一个巨大的情报公司,它有着庞大的情报网络.情报网络中共有 \(n\) 名情报员.每名情报员可能有若干名(可能没有)下线,除 \(1\) 名大头目外其余 ...

  4. [BZOJ4651][NOI2016]网格(Tarjan)

    下面直接给出结论,相关证明见官方题解. 1.若跳蚤数不超过1或仅有两只跳蚤且相邻,则答案为-1. 2.若跳蚤形成的连通块个数大于1,则答案为0. 3.若跳蚤之间建图存在割点,则答案为1. 4.否则为2 ...

  5. 利用dll加载漏洞实现远程代码执行

    微软的“不安全dll加载”漏洞涉及Windows XP至Windows 7等多个版本的操作系统.由于Windows存在加载未指明完整路径的dll文件的机制,可能导致用户在使用第三方软件.玩游戏.听音乐 ...

  6. bzoj 2286

    第一道"虚树"题目(好吧,我也不知道这是不是虚树,但和虚树的思想肯定是一样的,都是简化树结构) 这一类算法核心思想都是简化树结构,只取我们必须的节点和一些信息,然后在简化后的树结构 ...

  7. Codeforces Beta Round #8 B. Obsession with Robots 暴力

    B. Obsession with Robots 题目连接: http://www.codeforces.com/contest/8/problem/B Description The whole w ...

  8. python 基本语法速览,快速入门

    https://zhuanlan.zhihu.com/p/24536868 学习参考于这个博文. 我做一个笔记. 关于python一些常用的语法快速的预览,适合已经掌握一门编程语言的人.零基础,没有任 ...

  9. Linux命令-添加新硬盘,分区及挂载[转]

    http://www.cnblogs.com/qiyebao/p/4484370.html 转自:http://blog.chinaunix.net/uid-25829053-id-3067619.h ...

  10. 找不到原始安装光盘的佳能EOS Utility的下载和安装

    佳能EOS Utility的下载和安装   佳能很有意思,在官方网站上提供的数码相机驱动程序,只是“升级版”,而不是原始安装版.如果我有安装光盘,还去网上下载驱动干吗?解决方案:1,从佳能官方网站上下 ...