矩阵快速幂。

一开始的思路是$dfs$出一个矩阵,$k[i][j]$表示这一行是状态$i$,将这一行填满,下一行是$j$状态的方案数。然后就可以矩阵快速幂了,但是矩阵大小是$16*16$的,超时了......

仔细观察后会发现,第$0$行状态为$0$,因此往后填充的过程中,并不会出现16种情况,只会在6种状态之间转移:$0000$,$1111$,$1100$,$0011$,$0110$,$1001$。那么只要构造$6*6$的矩阵就可以了。

#include<bits/stdc++.h>
using namespace std; const int mod = 1e9 + 7;
int k[6][6];
long long n;
map<long long ,int> ans;
struct M {
int r;
int c;
int a[6][6];
}; M mul(const M &a, const M &b) {
M res;
res.r = a.r;
res.c = b.c;
memset(res.a, 0, sizeof res.a);
for(int j = 0; j < res.c; j ++) {
for(int k = 0; k < a.c ; k ++) {
if(b.a[k][j] == 0) continue;
for(int i = 0; i < res.r; i ++) {
long long u = (long long)a.a[i][k] * (long long)b.a[k][j] % (long long)mod;
res.a[i][j] = (res.a[i][j] + (int)u) % mod;
}
}
}
return res;
} void init() {
memset(k, 0, sizeof k);
/*
0 | 0000
1 | 1111
2 | 1100
3 | 0011
4 | 0110
5 | 1001
*/
k[0][0] ++;
k[0][1] ++;
k[0][2] ++;
k[0][3] ++;
k[0][5] ++; k[1][0] ++; k[2][0] ++;
k[2][3] ++; k[3][0] ++;
k[3][2] ++; k[4][5] ++; k[5][4] ++;
k[5][0] ++;
} void work(long long p) {
M a;
memset(a.a, 0, sizeof a.a);
a.r = 6;
a.c = 6;
for(int i = 0; i < 6; i ++) {
a.a[i][i] = 1;
} M b;
b.r = 6;
b.c = 6;
for(int i = 0; i < 6; i ++) {
for(int j = 0; j < 6; j ++) {
b.a[i][j] = k[i][j];
}
} M c;
memset(c.a, 0, sizeof c.a);
c.r = 1;
c.c = 6;
c.a[0][0] = 1; while(p) {
if(p & 1) {
p --;
a = mul(a, b);
}
p = p >> 1;
b = mul(b, b);
} c = mul(c, a);
ans[p] = c.a[0][0];
printf("%d\n", c.a[0][0]);
} int main() {
init();
while(~scanf("%lld", &n)) {
work(n);
}
return 0;
}

  

HDU 6185 Covering的更多相关文章

  1. HDU 6185 Covering 矩阵快速幂

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6185 题意:用 1 * 2 的小长方形完全覆盖 4 * n的矩形有多少方案. 解法:小范围是一个经典题 ...

  2. HDU - 6185 Covering(暴搜+递推+矩阵快速幂)

    Covering Bob's school has a big playground, boys and girls always play games here after school. To p ...

  3. HDU - 6185 :Covering(矩阵乘法&状态压缩)

    Bob's school has a big playground, boys and girls always play games here after school. To protect bo ...

  4. hdu 6185 递推+【矩阵快速幂】

    <题目链接> <转载于 >>> > 题目大意: 让你用1*2规格的地毯去铺4*n规格的地面,告诉你n,问有多少种不同的方案使得地面恰好被铺满且地毯不重叠.答案 ...

  5. HDU 6185(打表代码

    /** @xigua */ #include <cstdio> #include <cmath> #include <iostream> #include < ...

  6. hdu 6185 递推+矩阵快速幂

    思路:考虑全部铺满时,前2列的放法.有如下5种情况:(转自http://blog.csdn.net/elbadaernu/article/details/77825979 写的很详细 膜一下)  假设 ...

  7. HDU 2295 Radar (重复覆盖)

    Radar Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submi ...

  8. POJ 3831 &amp; HDU 3264 Open-air shopping malls(几何)

    题目链接: POJ:id=3831" target="_blank">http://poj.org/problem?id=3831 HDU:http://acm.h ...

  9. HDU 1565:方格取数(1)(最大点权独立集)***

    http://acm.hdu.edu.cn/showproblem.php?pid=1565 题意:中文. 思路:一个棋盘,要使得相邻的点不能同时选,问最大和是多少,这个问题就是最大点权独立集. 可以 ...

随机推荐

  1. JS零碎小知识

    filter()方法对数组进行过滤,生成新数组 var aqiNewData = aqiData.filter(function(data){ return data[1]>60; }); // ...

  2. eclipse常用快捷键大全 (转)

    Eclipse中10个最有用的快捷键组合  一个Eclipse骨灰级开发者总结了他认为最有用但又不太为人所知的快捷键组合.通过这些组合可以更加容易的浏览源代码,使得整体的开发效率和质量得到提升.    ...

  3. CSS全局声明*与body的区别

    通常在写CSS前,为了保证兼容性及展示效果的一致,先会清除浏览器默认样式.此时有两种用法比较常用:1.*{};  2.body{}; 之前我比较偏好于用*{},比较便于把控样式的设置.一直也没试过bo ...

  4. debian自动挂载ntfs硬盘

    首先下载安装ntfs-3g apt-get install ntfs-3g 然后查看分区信息 fdisk -l Device Boot Start End Blocks Id System /dev/ ...

  5. JQuery之validate入门

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  6. CURL 简介【转载】

    转自http://hancang2010.blog.163.com/blog/static/1824602612010711104018261/ 0) 头信息 curl命令查询服务器头信息 curl ...

  7. 使用CSS3+JQuery打造自定义视频播放器

    简介 HTML5的<video>标签已经被目前大多数主流浏览器所支持,包括还未正式发布的IE9也声明将支持<video>标签,利用浏览器原生特性嵌入视频有很多好处,所以很多开发 ...

  8. 漫谈JWT

    一.JWT简介[对于了解JWT的童鞋,可以直接跳到最后] 咱们就不弄那些乱七八糟的概念,就简单点说一下JWT是什么.有什么和能干什么 1. JWT概念和作用 JWT全称为json web token, ...

  9. 【BZOJ 1001】[BJOI2006]狼抓兔子(最大流)

    题目链接 最大流裸题,没什么好说吧,恰好点数多,考验网络流的效率,正好练\(Dinic\). #include <cstdio> #include <queue> #inclu ...

  10. 【译】Attacking XML with XML External Entity Injection (XXE)

    原文链接:Attacking XML with XML External Entity Injection (XXE) XXE:使用XML外部实体注入攻击XML 在XML中,有一种注入外部文件的方式. ...