F- Namori

http://agc004.contest.atcoder.jp/tasks/agc004_f


Time limit : 2sec / Memory limit : 256MB

Score : 2200 points

Problem Statement

You are given an undirected graph with N vertices and M edges. Here, N−1≤MN holds and the graph is connected. There are no self-loops or multiple edges in this graph.

The vertices are numbered 1 through N, and the edges are numbered 1 through M. Edge i connects vertices ai and bi.

The color of each vertex can be either white or black. Initially, all the vertices are white. Snuke is trying to turn all the vertices black by performing the following operation some number of times:

  • Select a pair of adjacent vertices with the same color, and invert the colors of those vertices. That is, if the vertices are both white, then turn them black, and vice versa.

Determine if it is possible to turn all the vertices black. If the answer is positive, find the minimum number of times the operation needs to be performed in order to achieve the objective.

Constraints

  • 2≤N≤105
  • N−1≤MN
  • 1≤ai,biN
  • There are no self-loops or multiple edges in the given graph.
  • The given graph is connected.

Partial Score

  • In the test set worth 1500 points, M=N−1.

Input

The input is given from Standard Input in the following format:

NMa1b1a2b2:aMbM

Output

If it is possible to turn all the vertices black, print the minimum number of times the operation needs to be performed in order to achieve the objective. Otherwise, print -1 instead.


Sample Input 1

Copy
6 5
1 2
1 3
1 4
2 5
2 6

Sample Output 1

Copy
5

For example, it is possible to perform the operations as shown in the following diagram:


Sample Input 2

Copy
3 2
1 2
2 3

Sample Output 2

Copy
-1

It is not possible to turn all the vertices black.


Sample Input 3

Copy
4 4
1 2
2 3
3 4
4 1

Sample Output 3

Copy
2

This case is not included in the test set for the partial score.


Sample Input 4

Copy
6 6
1 2
2 3
3 1
1 4
1 5
1 6

Sample Output 4

Copy
7

This case is not included in the test set for the partial score.

【分析】

  这题真神!!

  如果是一棵树的话。

  树是二分图,所以我们将他黑白染色,问题变成了,可以交换相邻的黑色和白色,使得最后图黑白倒置。

  把白色看成空格,黑色看成棋子,就是树上有x个棋子,你可以往空格里面移动,问你最少多少步到达目标状态。

  在树上,其实方案是唯一的,你求一下子树里面现在有多少个棋子,目标是多少个棋子,你就知道一定会从父亲那里运过来多少棋子(或者从这个运向父亲多少个棋子)

  这个是直接求就可以了的,就是$\sum ai-bi$

  黑点个数初末态不同则无解。

  当有环怎么办?

  我们分类讨论:

  1、构成奇环,多了的一条边连向的两点是同色的,就是说两个点那里可以同时加2个黑点或者同时减两个黑点,加/减多少个黑点你是知道的,(黑点奇偶初末态不同则无解),你就直接把那些黑点加上去,然后做法跟前面一样了。

  2、构成偶环,就是说多了的那条边也可以运棋子,假设这条边向上运了x个棋子,然后就也是树上的问题。你的ans最后会写成|Ai-x|或|Ai+x|或|Ai|的形式,这种形式的和很经典啦,就是数轴上的距离和,我们x取其中的中位数就能算出最优解。

 #include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define Maxn 100010
#define LL long long
const int INF=; int mymin(int x,int y) {return x<y?x:y;} struct node
{
int x,y,next;
}t[Maxn*];
int len,first[Maxn]; void ins(int x,int y)
{
t[++len].x=x;t[len].y=y;
t[len].next=first[x];first[x]=len;
} int r1,r2,ad;
int sm[Maxn],ss[Maxn],ans,d[Maxn],h[Maxn];
int dfs(int x,int fa,int dep)
{
sm[x]=;ss[x]=dep;d[x]=dep;
if(x==r1||x==r2) sm[x]+=ad,ss[x]+=ad;
int tt=;
for(int i=first[x];i;i=t[i].next) if(t[i].y!=fa)
{
int y=t[i].y;
tt+=dfs(y,x,-dep);
sm[x]+=sm[y];ss[x]+=ss[y];
}
if(x==r1) tt++;
if(x==r2) tt--;
if(tt==-) h[++h[]]=ss[x]-(sm[x]-ss[x]);
else if(tt==) h[++h[]]=(sm[x]-ss[x])-ss[x];
else ans+=abs(ss[x]-(sm[x]-ss[x]));
// ans+=abs(ss[x]-(sm[x]-ss[x]));
return tt;
} int ff[Maxn];
int ffa(int x)
{
if(ff[x]!=x) ff[x]=ffa(ff[x]);
return ff[x];
} int main()
{
// int T;
// scanf("%d",&T);
// while(T--)
{
int n,m;r1=r2=;
scanf("%d%d",&n,&m);
len=;
memset(first,,sizeof(first));
for(int i=;i<=n;i++) ff[i]=i;
for(int i=;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
if(ffa(x)!=ffa(y))
{
ff[ffa(x)]=ffa(y);
ins(x,y);ins(y,x);
}
else r1=x,r2=y;
}
if(m==n-)
{
dfs(,,);
ans=;
for(int i=;i<=n;i++) ans+=abs(ss[i]-(sm[i]-ss[i]));
if(sm[]-ss[]!=ss[]) printf("-1\n");
else printf("%d\n",ans);
}
else
{
// printf("-2\n");
ad=;
dfs(,,);
if(d[r1]==d[r2])
{
ad=abs(ss[]-(sm[]-ss[]));
if(ad&) printf("-1\n");
else
{
ad/=;
if(ss[]>sm[]-ss[]) dfs(,,);
else dfs(,,);
ans=ad;
for(int i=;i<=n;i++) ans+=abs(ss[i]-(sm[i]-ss[i]));
printf("%d\n",ans);
}
}
else
{
h[]=;h[++h[]]=;
ans=;
dfs(,,);
if(sm[]-ss[]!=ss[]) printf("-1\n");
else
{
sort(h+,h++h[]);
int x=h[h[]/+];
for(int i=;i<=h[];i++) ans+=abs(h[i]-x);
printf("%d\n",ans);
}
}
}
}
return ;
}

【代码有点丑。。

2017-04-19 09:43:00

【atcoder F - Namori】**的更多相关文章

  1. 【Atcoder yahoo-procon2019-qual D】 Ears

    Atcoder yahoo-procon2019-qual D 题意:给你\(L\)个耳朵(???),以及一条范围从\(0\)到\(L\)的数轴,你可以选择一个出发点,从该点开始随意走动,如果经过了\ ...

  2. 【AtCoder】ARC067 F - Yakiniku Restaurants 单调栈+矩阵差分

    [题目]F - Yakiniku Restaurants [题意]给定n和m,有n个饭店和m张票,给出Ai表示从饭店i到i+1的距离,给出矩阵B(i,j)表示在第i家饭店使用票j的收益,求任选起点和终 ...

  3. 【AtCoder Regular Contest 082 F】Sandglass

    [链接]点击打开链接 [题意] 你有一个沙漏. 沙漏里面总共有X单位的沙子. 沙漏分A,B上下两个部分. 沙漏从上半部分漏沙子到下半部分. 每个时间单位漏1单位的沙子. 一开始A部分在上面.然后在r1 ...

  4. 【Wannafly挑战赛4】F 线路规划 倍增+Kruskal+归并

    [Wannafly挑战赛4]F 线路规划 题目描述 Q国的监察院是一个神秘的组织.这个组织掌握了整个帝国的地下力量,监察着Q国的每一个人.监察院一共有N个成员,每一个成员都有且仅有1个直接上司,而他只 ...

  5. 【AtCoder Regular Contest 082 A】Together

    [链接]点击打开链接 [题意] 给你n个数字,每个位置上的数字可以+1,不变,或-1,每个位置只能操作一次. 操作完之后,让你选一个数字x,然后统计a[i]==x的个数count. 问你count的最 ...

  6. 【AtCoder Regular Contest 082】Derangement

    [链接]点击打开链接 [题意] 在这里写题意 [题解] 贪心. 连续一块的p[i]==i的话,对答案的贡献就应该为(这个连续块的长度+1)/2; 长度为1的也正确. (也即两两相邻的互换位置.) [错 ...

  7. 【AtCoder Beginner Contest 074 D】Restoring Road Network

    [链接]h在这里写链接 [题意] 给你任意两点之间的最短路. 让你求出原图. 或者输出原图不存在. 输出原图的边长总和的最小值. [题解] floyd算法. 先在原有的矩阵上. 做一遍floyd. 如 ...

  8. 【AtCoder Beginner Contest 074 C】Sugar Water

    [链接]h在这里写链接 [题意] 让你在杯子里加糖或加水. (4种操作类型) 糖或水之间有一定关系. 糖和水的总量也有限制. 问你糖水浓度的最大时,糖和糖水的量. [题解] 写个dfs就好. 每次有4 ...

  9. 【AtCoder Beginner Contest 074 B】Collecting Balls (Easy Version)

    [链接]h在这里写链接 [题意] 看懂题目之后就会发现是道大水题. [题解] 在这里写题解 [错的次数] 0 [反思] 在这了写反思 [代码] #include <bits/stdc++.h&g ...

随机推荐

  1. 01 DIV+CSS 固定页面布局

    本文讲解使用DIV+CSS布局最基本的内容,读完本文你讲会使用DIV+CSS进行简单的页面布局. DIV+CSS布局中主要CSS属性介绍: Float: Float属性是DIV+CSS布局中最基本也是 ...

  2. Lua只读表

    利用Lua的元表(metatable)和元函数(metafunction)可以很简单的实现此功能. 其实现大致分为三个部分 1.禁止在表中创建新值 2.禁止改变已有的值 3.将子表也变为只读 1.禁止 ...

  3. jQuery.Event的一些用法

    直接写用法 //创建一个事件 var event = $.Event("事件类型",["定义的事件参数最终将出现在e1中"]); //绑定一个处理器 $(obj ...

  4. mybatis错误总结

    1:传递多个参数失败   Parameter 'username' not found. Available parameters are [0, 1, param1, param2] dao层错误写 ...

  5. final关键字详解

    java中,final关键字可以用来修饰类.方法和变量(包括成员变量和局部变量).下面就从这三个方面来了解一下final关键字的基本用法. 1.修饰类 当用final修饰一个类时,表明这个类不能被继承 ...

  6. HNOI2019退役祭

    对你没看错,是退役祭. Day -2 春游.话说为什么又是植物园? Day -1 白天上文化课,晚上给机房其它童鞋出题. Day 0 给他们考试,然后颓3Dmaze,毕竟没网 Day 1 车上复习了下 ...

  7. MM(Majorize-Minimization, Minorize-Maximization)优化方法

    MM算法思想 MM算法是一种迭代优化方法,它利用函数的凸性来找到原函数的最大值或最小值.当原目标函数\(f(\theta)\)较难优化时,算法不直接对原目标函数求最优解,而去求解逼近于原目标函数的一个 ...

  8. 生成验证码tp

    js里拼接随机数 页面上链接 去掉后缀名

  9. 141.Linked List Cycle---双指针

    题目链接 题目大意:给出一个链表,判断该链表是否有环,空间复杂度最好控制在o(1) 这个题没有给测试用例,导致没太明白题目意思,看了题解,用了两种方法示例如下: 法一(借鉴):利用两个指针,一个指针步 ...

  10. 122.Best Time to Buy and Sell Stock II---dp

    题目链接:https://leetcode.com/problems/best-time-to-buy-and-sell-stock-ii/description/ 题目大意:基本定义与121类似,不 ...