思路:nums为给定的数组,动态规划:

设 一维数组:dp[i] 表示 以第i个元素为结尾的一段最大子序和。

1)若dp[i-1]小于0,则dp[i]加上前面的任意长度的序列和都会小于nums[i],则 dp[i] = nums[i];

2)  若dp[i-1] 不小于0, 则 dp[i] = dp[i-1] + nums[i];

边界条件:dp[0] = nums[0]  (nums数组的第一个元素的最大长度就是本身)

class Solution {
public:
int maxSubArray(vector<int>& nums) {
int len = nums.size();
if(len == ) return ;
if(len == ) return nums[];
vector<int> dp(len, ); //dp[i]: 以第i个元素为结尾的最大子序列和
dp[] = nums[];
int max_num = dp[];
for(int i=; i<len; i++){
if(dp[i-] > )
dp[i] = dp[i-] +nums[i];
else
dp[i] = nums[i];
max_num = max(max_num, dp[i]);
}
return max_num;
}
};

最长公共子序列:

https://www.nowcoder.com/courses/6/8/3

#include<bits/stdc++.h>
using namespace std;
int longestsub(string a, string b){
int a_s = a.size(), b_s = b.size();
int N = (a_s >= b_s)? a_s: b_s;
int dp[N+][N+];
memset(dp, , sizeof(dp));
if(a_s<= || b_s<=)
return ;
for(int i=; i<=a_s; i++){
for(int j=; j<=b_s; j++){
if(a[i-]==b[j-])
dp[i][j] = dp[i-][j-]+;
else
dp[i][j] = max(dp[i-][j], dp[i][j-]);
//cout<<dp[i][j]<<" ";
}
//cout<<endl;
}
return dp[a_s][b_s];
}
int main(){
string a, b;
while(cin>>a>>b){
int res = longestsub(a,b);
cout<<res<<endl;
}
return ;
}

568 Maximum Vacation Days 最大化休假日

LeetCode wants to give one of its best employees the option to travel among N cities to collect algorithm problems. But all work and no play makes Jack a dull boy, you could take vacations in some particular cities and weeks. Your job is to schedule the traveling to maximize the number of vacation days you could take, but there are certain rules and restrictions you need to follow.

Rules and restrictions:

  1. You can only travel among N cities, represented by indexes from 0 to N-1. Initially, you are in the city indexed 0 on Monday.
  2. The cities are connected by flights. The flights are represented as a N*N matrix (not necessary symmetrical), called flights representing the airline status from the city i to the city j. If there is no flight from the city i to the city j, flights[i][j] = 0; Otherwise, flights[i][j] = 1. Also, flights[i][i] = 0 for all i.
  3. You totally have K weeks (each week has 7 days) to travel. You can only take flights at most once per day and can only take flights on each week's Monday morning. Since flight time is so short, we don't consider the impact of flight time.
  4. For each city, you can only have restricted vacation days in different weeks, given an N*K matrix called days representing this relationship. For the value of days[i][j], it represents the maximum days you could take vacation in the city i in the week j.

You're given the flights matrix and days matrix, and you need to output the maximum vacation days you could take during K weeks.

Example 1:

Input:flights = [[0,1,1],[1,0,1],[1,1,0]], days = [[1,3,1],[6,0,3],[3,3,3]]
Output: 12
Explanation:
Ans = 6 + 3 + 3 = 12.
One of the best strategies is:
1st week : fly from city 0 to city 1 on Monday, and play 6 days and work 1 day.
(Although you start at city 0, we could also fly to and start at other cities since it is Monday.)
2nd week : fly from city 1 to city 2 on Monday, and play 3 days and work 4 days.
3rd week : stay at city 2, and play 3 days and work 4 days.

Example 2:

Input:flights = [[0,0,0],[0,0,0],[0,0,0]], days = [[1,1,1],[7,7,7],[7,7,7]]
Output: 3
Explanation:
Ans = 1 + 1 + 1 = 3.
Since there is no flights enable you to move to another city, you have to stay at city 0 for the whole 3 weeks.
For each week, you only have one day to play and six days to work.
So the maximum number of vacation days is 3.

Example 3:

Input:flights = [[0,1,1],[1,0,1],[1,1,0]], days = [[7,0,0],[0,7,0],[0,0,7]]
Output: 21
Explanation:
Ans = 7 + 7 + 7 = 21
One of the best strategies is:
1st week : stay at city 0, and play 7 days.
2nd week : fly from city 0 to city 1 on Monday, and play 7 days.
3rd week : fly from city 1 to city 2 on Monday, and play 7 days.

Note:

  1. N and K are positive integers, which are in the range of [1, 100].
  2. In the matrix flights, all the values are integers in the range of [0, 1].
  3. In the matrix days, all the values are integers in the range [0, 7].
  4. You could stay at a city beyond the number of vacation days, but you should work on the extra days, which won't be counted as vacation days.
  5. If you fly from the city A to the city B and take the vacation on that day, the deduction towards vacation days will count towards the vacation days of city B in that week.
  6. We don't consider the impact of flight hours towards the calculation of vacation days.

题目大意:

给定N个城市,K周时间。
矩阵flights描述N个城市之间是否存在航班通路。
若flights[i][j] = 1,表示i与j存在通路,否则表示不存在。特别的,flights[i][i]恒等于0。
矩阵days表示可以在某城市逗留的最长天数。
例如days[i][j] = k,表示第i个城市第j周最长可以逗留k天。
初始位于0号城市,每周可以选择一个能够到达的城市逗留(也可以留在当前城市)。
求最优策略下的最长逗留总天数。
注意:
  1. N和K是正整数,范围[1, 100]
  2. 矩阵flights的元素范围[0, 1]
  3. 矩阵days的元素范围[0, 7]

思路:

解题思路:

动态规划(Dynamic Programming)
dp[w][c]表示第w周选择留在第c个城市可以获得的最大总收益

初始令dp[w][0] = 0, dp[w][1 .. c - 1] = -1

当dp[w][c] < 0时,表示第c个城市在第w周时还不可达。
状态转移方程:
for w in ( .. K)
for sc in ( .. N)
if dp[w][sc] < :
continue
for tc in ( .. N)
if sc == tc or flights[sc][tc] == :
dp[w + ][tc] = max(dp[w + ][tc], dp[w][sc] + days[tc][w])
class Solution {
public:
int maxVacationDays(vector<vector<int>>& flights, vector<vector<int>>& days) {
int N = flights.size();
int K = days[].size(); vector<vector<int>> dp(K, vector<int>(N, ));
vector<vector<bool>> reach(K, vector<bool>(N, false)); // first week, no guesses for the previous city
for (int city = ; city < N; ++city)
if (city == || flights[][city]) {
dp[][city] = days[city][]; //第0周留在city可获得的最大收益==在city逗留的最大天数
reach[][city] = true; //第0周可达city
} // topological order (week)
for (int week = ; week < K; ++week) {
// current city
for (int city = ; city < N; ++city) {
// Subproblem: guess a previous city
for (int prevCity = ; prevCity < N; ++prevCity) {
if (reach[week - ][prevCity] && (city == prevCity || flights[prevCity][city])) {
dp[week][city] = max(dp[week][city], dp[week - ][prevCity] + days[city][week]);
reach[week][city] = true;
}
}
}
} int res = ;
for (int city = ; city < N; ++city)
res = max(res, dp[K - ][city]); return res; } };

leetcode 53 最大子序列之和(动态规划)的更多相关文章

  1. 小旭讲解 LeetCode 53. Maximum Subarray 动态规划 分治策略

    原题 Given an integer array nums, find the contiguous subarray (containing at least one number) which ...

  2. [array] leetcode - 53. Maximum Subarray - Easy

    leetcode - 53. Maximum Subarray - Easy descrition Find the contiguous subarray within an array (cont ...

  3. hdu1003 Max Sum【最大连续子序列之和】

    题目链接:https://vjudge.net/problem/HDU-1003 题目大意:给出一段序列,求出最大连续子序列之和,以及给出这段子序列的起点和终点. 解题思路:最长连续子序列之和问题其实 ...

  4. [LeetCode] 4Sum 四数之和

    Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = tar ...

  5. leetcode:House Robber(动态规划dp1)

    You are a professional robber planning to rob houses along a street. Each house has a certain amount ...

  6. CJOJ 2044 【一本通】最长公共子序列(动态规划)

    CJOJ 2044 [一本通]最长公共子序列(动态规划) Description 一个给定序列的子序列是在该序列中删去若干元素后得到的序列.确切地说,若给定序列X,则另一序列Z是X的子序列是指存在一个 ...

  7. C#版 - Leetcode 633. 平方数之和 - 题解

    版权声明: 本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C#版 - L ...

  8. 【LOJ#6074】子序列(动态规划)

    [LOJ#6074]子序列(动态规划) 题面 LOJ 题解 考虑一个暴力\(dp\). 设\(f[i][c]\)表示当前在第\(i\)位,并且以\(c\)结尾的子序列个数. 那么假设当前位为\(a\) ...

  9. 【BZOJ2423】最长公共子序列(动态规划)

    [BZOJ2423]最长公共子序列(动态规划) 题面 BZOJ 洛谷 题解 今天考试的时候,神仙出题人\(fdf\)把这道题目作为一个二合一出了出来,我除了orz还是只会orz. 对于如何\(O(n^ ...

随机推荐

  1. real-Time Correlative Scan Matching

    启发式算法(heuristic algorithm)是相对于最优化算法提出的.一个问题的最优算法求得该问题每个实例的最优解.启发式算法可以这样定义:一个基于直观或经验构造的算法,在可接受的花费(指计算 ...

  2. UVa 1608 Non-boring sequences (分治)

    题意:给你一个长度为n序列,如果这个任意连续子序列的中都有至少出现一次的元素,那么就称这个序列是不无聊的,判断这个序列是不是无聊的. 析:首先如果整个序列中有一个只出过一次的元素,假设是第 p 个,那 ...

  3. Java基本类型学习

    基本类型,或者叫做内置类型,是JAVA中不同于类的特殊类型.它们是我们编程中使用最频繁的类型.java是一种强类型语言,第一次申明变量必须说明数据类型,第一次变量赋值称为变量的初始化. 1. Java ...

  4. .NET基础 (03)生成、部署和管理

    生成.部署和管理1 如何生成强签名的程序集2 如何把程序集放入GAC中3 延迟签名及其作用4 程序集的版本分哪几部分 1 如何生成强签名的程序集在生成程序集时,CLR提供了两种可选类型:强签名程序集. ...

  5. 编写高质量代码改善C#程序的157个建议——建议113:声明变量前考虑最大值

    建议113:声明变量前考虑最大值 假设正在开发一个工资系统,其中一个模块负责处理加薪.代码如下: static void Main(string[] args) { ; salary = (); Co ...

  6. LinearLayout属性用法和源码分析

    转载自:http://www.jianshu.com/p/650c3fd7e6ab   一. LinearLayout的属性和用法 LinearLayout对于开发来说,是使用最常用的布局控件之一,但 ...

  7. Python + HTMLTestRunner + smtplib 完成测试报告生成及发送测试报告邮件

    一下代码是自己结合教材,并结合以往用到的实例编写的代码,可以做为参考 import smtplib from email.mime.text import MIMEText from email.mi ...

  8. java爬虫入门

    本文内容 涞源于  罗刚 老师的 书籍 << 自己动手写网络爬虫一书 >> ; 本文将介绍 1: 网络爬虫的是做什么的?  2: 手动写一个简单的网络爬虫; 1: 网络爬虫是做 ...

  9. How to: Cancel a Task and Its Children

    http://msdn.microsoft.com/en-us/library/dd537607.aspx using System; using System.Collections.Concurr ...

  10. Web开发工具箱

    1.打印1 Web打印组件jatoolsPrinter 2.打印2Lodop 3.web前端利器 Web Essentials