思路:nums为给定的数组,动态规划:

设 一维数组:dp[i] 表示 以第i个元素为结尾的一段最大子序和。

1)若dp[i-1]小于0,则dp[i]加上前面的任意长度的序列和都会小于nums[i],则 dp[i] = nums[i];

2)  若dp[i-1] 不小于0, 则 dp[i] = dp[i-1] + nums[i];

边界条件:dp[0] = nums[0]  (nums数组的第一个元素的最大长度就是本身)

class Solution {
public:
int maxSubArray(vector<int>& nums) {
int len = nums.size();
if(len == ) return ;
if(len == ) return nums[];
vector<int> dp(len, ); //dp[i]: 以第i个元素为结尾的最大子序列和
dp[] = nums[];
int max_num = dp[];
for(int i=; i<len; i++){
if(dp[i-] > )
dp[i] = dp[i-] +nums[i];
else
dp[i] = nums[i];
max_num = max(max_num, dp[i]);
}
return max_num;
}
};

最长公共子序列:

https://www.nowcoder.com/courses/6/8/3

#include<bits/stdc++.h>
using namespace std;
int longestsub(string a, string b){
int a_s = a.size(), b_s = b.size();
int N = (a_s >= b_s)? a_s: b_s;
int dp[N+][N+];
memset(dp, , sizeof(dp));
if(a_s<= || b_s<=)
return ;
for(int i=; i<=a_s; i++){
for(int j=; j<=b_s; j++){
if(a[i-]==b[j-])
dp[i][j] = dp[i-][j-]+;
else
dp[i][j] = max(dp[i-][j], dp[i][j-]);
//cout<<dp[i][j]<<" ";
}
//cout<<endl;
}
return dp[a_s][b_s];
}
int main(){
string a, b;
while(cin>>a>>b){
int res = longestsub(a,b);
cout<<res<<endl;
}
return ;
}

568 Maximum Vacation Days 最大化休假日

LeetCode wants to give one of its best employees the option to travel among N cities to collect algorithm problems. But all work and no play makes Jack a dull boy, you could take vacations in some particular cities and weeks. Your job is to schedule the traveling to maximize the number of vacation days you could take, but there are certain rules and restrictions you need to follow.

Rules and restrictions:

  1. You can only travel among N cities, represented by indexes from 0 to N-1. Initially, you are in the city indexed 0 on Monday.
  2. The cities are connected by flights. The flights are represented as a N*N matrix (not necessary symmetrical), called flights representing the airline status from the city i to the city j. If there is no flight from the city i to the city j, flights[i][j] = 0; Otherwise, flights[i][j] = 1. Also, flights[i][i] = 0 for all i.
  3. You totally have K weeks (each week has 7 days) to travel. You can only take flights at most once per day and can only take flights on each week's Monday morning. Since flight time is so short, we don't consider the impact of flight time.
  4. For each city, you can only have restricted vacation days in different weeks, given an N*K matrix called days representing this relationship. For the value of days[i][j], it represents the maximum days you could take vacation in the city i in the week j.

You're given the flights matrix and days matrix, and you need to output the maximum vacation days you could take during K weeks.

Example 1:

Input:flights = [[0,1,1],[1,0,1],[1,1,0]], days = [[1,3,1],[6,0,3],[3,3,3]]
Output: 12
Explanation:
Ans = 6 + 3 + 3 = 12.
One of the best strategies is:
1st week : fly from city 0 to city 1 on Monday, and play 6 days and work 1 day.
(Although you start at city 0, we could also fly to and start at other cities since it is Monday.)
2nd week : fly from city 1 to city 2 on Monday, and play 3 days and work 4 days.
3rd week : stay at city 2, and play 3 days and work 4 days.

Example 2:

Input:flights = [[0,0,0],[0,0,0],[0,0,0]], days = [[1,1,1],[7,7,7],[7,7,7]]
Output: 3
Explanation:
Ans = 1 + 1 + 1 = 3.
Since there is no flights enable you to move to another city, you have to stay at city 0 for the whole 3 weeks.
For each week, you only have one day to play and six days to work.
So the maximum number of vacation days is 3.

Example 3:

Input:flights = [[0,1,1],[1,0,1],[1,1,0]], days = [[7,0,0],[0,7,0],[0,0,7]]
Output: 21
Explanation:
Ans = 7 + 7 + 7 = 21
One of the best strategies is:
1st week : stay at city 0, and play 7 days.
2nd week : fly from city 0 to city 1 on Monday, and play 7 days.
3rd week : fly from city 1 to city 2 on Monday, and play 7 days.

Note:

  1. N and K are positive integers, which are in the range of [1, 100].
  2. In the matrix flights, all the values are integers in the range of [0, 1].
  3. In the matrix days, all the values are integers in the range [0, 7].
  4. You could stay at a city beyond the number of vacation days, but you should work on the extra days, which won't be counted as vacation days.
  5. If you fly from the city A to the city B and take the vacation on that day, the deduction towards vacation days will count towards the vacation days of city B in that week.
  6. We don't consider the impact of flight hours towards the calculation of vacation days.

题目大意:

给定N个城市,K周时间。
矩阵flights描述N个城市之间是否存在航班通路。
若flights[i][j] = 1,表示i与j存在通路,否则表示不存在。特别的,flights[i][i]恒等于0。
矩阵days表示可以在某城市逗留的最长天数。
例如days[i][j] = k,表示第i个城市第j周最长可以逗留k天。
初始位于0号城市,每周可以选择一个能够到达的城市逗留(也可以留在当前城市)。
求最优策略下的最长逗留总天数。
注意:
  1. N和K是正整数,范围[1, 100]
  2. 矩阵flights的元素范围[0, 1]
  3. 矩阵days的元素范围[0, 7]

思路:

解题思路:

动态规划(Dynamic Programming)
dp[w][c]表示第w周选择留在第c个城市可以获得的最大总收益

初始令dp[w][0] = 0, dp[w][1 .. c - 1] = -1

当dp[w][c] < 0时,表示第c个城市在第w周时还不可达。
状态转移方程:
for w in ( .. K)
for sc in ( .. N)
if dp[w][sc] < :
continue
for tc in ( .. N)
if sc == tc or flights[sc][tc] == :
dp[w + ][tc] = max(dp[w + ][tc], dp[w][sc] + days[tc][w])
class Solution {
public:
int maxVacationDays(vector<vector<int>>& flights, vector<vector<int>>& days) {
int N = flights.size();
int K = days[].size(); vector<vector<int>> dp(K, vector<int>(N, ));
vector<vector<bool>> reach(K, vector<bool>(N, false)); // first week, no guesses for the previous city
for (int city = ; city < N; ++city)
if (city == || flights[][city]) {
dp[][city] = days[city][]; //第0周留在city可获得的最大收益==在city逗留的最大天数
reach[][city] = true; //第0周可达city
} // topological order (week)
for (int week = ; week < K; ++week) {
// current city
for (int city = ; city < N; ++city) {
// Subproblem: guess a previous city
for (int prevCity = ; prevCity < N; ++prevCity) {
if (reach[week - ][prevCity] && (city == prevCity || flights[prevCity][city])) {
dp[week][city] = max(dp[week][city], dp[week - ][prevCity] + days[city][week]);
reach[week][city] = true;
}
}
}
} int res = ;
for (int city = ; city < N; ++city)
res = max(res, dp[K - ][city]); return res; } };

leetcode 53 最大子序列之和(动态规划)的更多相关文章

  1. 小旭讲解 LeetCode 53. Maximum Subarray 动态规划 分治策略

    原题 Given an integer array nums, find the contiguous subarray (containing at least one number) which ...

  2. [array] leetcode - 53. Maximum Subarray - Easy

    leetcode - 53. Maximum Subarray - Easy descrition Find the contiguous subarray within an array (cont ...

  3. hdu1003 Max Sum【最大连续子序列之和】

    题目链接:https://vjudge.net/problem/HDU-1003 题目大意:给出一段序列,求出最大连续子序列之和,以及给出这段子序列的起点和终点. 解题思路:最长连续子序列之和问题其实 ...

  4. [LeetCode] 4Sum 四数之和

    Given an array S of n integers, are there elements a, b, c, and d in S such that a + b + c + d = tar ...

  5. leetcode:House Robber(动态规划dp1)

    You are a professional robber planning to rob houses along a street. Each house has a certain amount ...

  6. CJOJ 2044 【一本通】最长公共子序列(动态规划)

    CJOJ 2044 [一本通]最长公共子序列(动态规划) Description 一个给定序列的子序列是在该序列中删去若干元素后得到的序列.确切地说,若给定序列X,则另一序列Z是X的子序列是指存在一个 ...

  7. C#版 - Leetcode 633. 平方数之和 - 题解

    版权声明: 本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C#版 - L ...

  8. 【LOJ#6074】子序列(动态规划)

    [LOJ#6074]子序列(动态规划) 题面 LOJ 题解 考虑一个暴力\(dp\). 设\(f[i][c]\)表示当前在第\(i\)位,并且以\(c\)结尾的子序列个数. 那么假设当前位为\(a\) ...

  9. 【BZOJ2423】最长公共子序列(动态规划)

    [BZOJ2423]最长公共子序列(动态规划) 题面 BZOJ 洛谷 题解 今天考试的时候,神仙出题人\(fdf\)把这道题目作为一个二合一出了出来,我除了orz还是只会orz. 对于如何\(O(n^ ...

随机推荐

  1. Mac/win下的docker容器和LAMP环境的安装(亲测)

    docker直接在官网下载就行了无需赘述 接下来就是在终端中运行docker docker ps 显示当前运行的容器 docker images 显示以及装在的镜像 接下来我们安装centos镜像 d ...

  2. BWA/BWT 比对软件

    名称    bwa –   Burrows-Wheeler  Alignment Tool 内容摘要描述命令行与选项SAM 比对格式短序列比对注意事项  比对精确性  估计插入大小分布  内存需求  ...

  3. windows7配置git 免密码登录git服务器

    1.在桌面右击“Git Bash Here ” 2.输入:cd ~/.ssh/ 3.输入你的git服务器的用户 git config --global user.name "xx" ...

  4. linux常用Java程序员使用命令(一)

    pwd 显示当前路径cd 切换目录 . .. ~ls 显示文件(夹) -l 显示详细信息 -a 显示全部,包括隐藏文件(夹) mkdir 创建文件夹 -p 递归创建 touch 创建空白文件 echo ...

  5. NetBeans找不到C/C++编译器

    如果您已经安装 NetBeans IDE 6.9,但其中不包括 C/C++ 插件 如果在选择“文件”>“新建项目”时,NetBeans IDE 未显示 "C/C++" 项目类 ...

  6. 小试maven工程

    由于工作中要用到maven来进行开发j2ee开发,所以选用了集成maven的eclipse版本: 下载地址: https://www.eclipse.org/downloads/ 根据提示下载32或者 ...

  7. Android-获取网络图片设置壁纸

    下载图片,设置壁纸 的代码: package liudeli.async; import android.app.Activity; import android.app.ProgressDialog ...

  8. mybatis 单表的增删改查

    添加数据返回id mapper.xml mapper -> insert -> selectKey mybatis 内置别名

  9. [LeetCode 题解]: ZigZag Conversion

    前言   [LeetCode 题解]系列传送门:  http://www.cnblogs.com/double-win/category/573499.html   1.题目描述 The string ...

  10. SQL命令行修改数据库

    增加列: alter table tableName add columnName varchar(30) 修改列类型:alter table tableName alter column colum ...