hihoCoder #1695 公平分队II
题目大意
Alice 和 Bob 在玩一个游戏。Alice 将 $1$ 到 $2n$ 这 $2n$ 个整数分成两组,每组 $n$ 个。Bob 从中选一组,剩下一组归 Alice。Alice 可以与 Bob 交换一个数也可以不换。游戏目标是使自己所得的 $n$ 个数之和最大。两人都足够聪明,试问 Alice 所得的 $n$ 个数之和是多少?
解法
写这篇随笔是为了总结一下这一类问题该从哪里入手进行分析。
这道博弈题和很久以前遇到的春游计划那道题一样,解法是倒推。
key observation:【 Bob 必定会选择最优的那一组数(选法也许不唯一)】
记 Alice 选的 $n$ 个数为 $a_1< a_2 < \ldots < a_n$, Bob 选的为 $b_1 < b_2 < \ldots < b_n$ 。
若 Alice 不必与 Bob 交换一个数,即有 $a_1 > b_n$,那么此时 Bob 选的 $n$ 个数为 $1, 2, 3, \ldots, n$;然而这是最差的结果;换言之,若Bob 选另外 $n$ 个数,其结果必然不比此结果差,从而此种情况不可能出现,所以 Alice 必定会拿 $a_1$ 交换 $b_n$。根据 Bob 会在二者中取最优者,我们有
\[
a_1 + \sum_{1\le i < n} b_i \ge b_1 + \sum_{1\le i<n} a_i
\]
即
\begin{equation}
\sum_{2\le i \le n-1} b_i - ai \ge 0 \qquad (n\ge 2) \label{condition}
\end{equation}
为了方便,我们将 \eqref{condition} 式左边记做 $\Delta$,将 $1$ 到 $2n$ 的和记做 $S$,将 Alice 所得的 $n$ 个数之和记为 $S_A$,即
\[
S_A = b_n + \sum_{2\le i\le n} a_i
\]
现在问题转化为
Alice 如何分组才能在满足 \eqref{condition} 式的前提下使得 $S_A$ 最大?
我们有
\[
S_A = (S -\Delta + a_n + b_n - a_1 - b_1)/2
\]
观察可知,对于 $n\ge 2$,若 $n$ 为偶数,$a_n$、$b_n$ 取最大的两个数,$a_1$、$b_1$ 取最小的两个数,$\Delta$ 的值可取到 $0$;当 $n$ 为奇数时,同样使 $a_n$、$b_n$ 取最大的两个数,$a_1$、$b_1$ 取最小的两个数,此时 $\Delta$ 的值可取到 $1$,并且这是此时的最优结果,理由是:当且仅当按上述方法取值时,$a_n + b_n - a_1 - b_1$ 的值最大。
hihoCoder #1695 公平分队II的更多相关文章
- HihoCoder1653 : 公平分队([Offer收割]编程练习赛39)(贪心)
描述 小Hi和小Ho在玩一个战争游戏.游戏中2N个战斗单位,其中第i个单位的战斗力是Ai. 现在小Hi和小Ho要各选N个单位组成队伍,当然他们都希望自己队伍的总战斗力越大越好. 为了使分队更加公平,经 ...
- hihocoder 1519 : 逃离迷宫II
题目链接 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 小Hi被坏女巫抓进里一间有N x M个格子组成的矩阵迷宫. 有些格子是小Hi可以经过的,我们用'.'表示:有些格 ...
- HihoCoder - 1615矩阵游戏II(贪心)
矩阵游戏II 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 给定一个NxN的整数矩阵,小Hi每次操作可以选择两列,将这两列中的所有数变成它的相反数. 小Hi可以进行任意 ...
- hihoCoder 1261 String Problem II
时间限制:50000ms 单点时限:5000ms 内存限制:512MB 描写叙述 我们有一个字符串集合S,当中有N个两两不同的字符串.还有M个询问,每一个询问都会先给出一个字符串w,你须要回答下面三个 ...
- 【HIHOCODER 1604】股票价格II(堆)
描述 小Hi最近在关注股票,为了计算股票可能的盈利,他获取了一只股票最近N天的价格A1~AN. 在小Hi的策略中,每天可以在下列三种操作中选取一种: 1.什么也不做: 2.按照当天的价格买进一个单位的 ...
- [hihicoder][Offer收割]编程练习赛47
删除树节点 #pragma comment(linker, "/STACK:102400000,102400000") #include<stdio.h> #inclu ...
- CFA一级知识点总结
更多来自: www.vipcoursea.com Ethics 部分 Objective of codes and standard:永远是为了maintain public trust in ...
- [Offer收割]编程练习赛39
公平分队 #pragma comment(linker, "/STACK:102400000,102400000") #include<stdio.h> #includ ...
- 【hihoCoder 1454】【hiho挑战赛25】【坑】Rikka with Tree II
http://hihocoder.com/problemset/problem/1454 调了好长时间,谜之WA... 等我以后学好dp再来看为什么吧,先弃坑(╯‵□′)╯︵┻━┻ #include& ...
随机推荐
- LOW逼三人组(一)----冒泡算法
排序 1.冒泡排序 冒泡算法 import random # 随机模块 def bubble_sort(li): ###################################冒泡排序#### ...
- stanfordCorenlp在python3中的安装使用+词性学习
1 安装 前言 Stanford CoreNLP的源代码是使用Java写的,提供了Server方式进行交互.stanfordcorenlp是一个对Stanford CoreNLP进行了封装的Pytho ...
- 设计模式之Composite
设计模式总共有23种模式这仅仅是为了一个目的:解耦+解耦+解耦...(高内聚低耦合满足开闭原则) Composite定义? 将对象以树形结构组织起来,以达成“部分-整体” 的层次结构. 想到Compo ...
- supervisor之启动rabbitmq报错原因
前言 今天重启了服务器,发现supervisor管理的rabbitmq的进程居然启动失败了,查看日志发现老是报错,记录一下解决的办法. 报错:erlexec:HOME must be set 找了网上 ...
- 【读书笔记::深入理解linux内核】内存寻址
我对linux高端内存的错误理解都是从这篇文章得来的,这篇文章里讲的 物理地址 = 逻辑地址 – 0xC0000000:这是内核地址空间的地址转换关系. 这句话瞬间让我惊呆了,根据我的CPU的知识,开 ...
- Linux 编译 apr-util 时报错
前言 Apache 2.4 以后的版本不再自带 APR 库(Apache Portable Runtime,Apache 可移植运行库),所以在安装 Apache 之前需要手动下载安装 APR 库. ...
- Django项目上传到AWS服务器上
EC2是亚马逊(Amazon.com)提供的弹性云计算服务:Apache是一个跨平台的Web服务器端软件,可以使Python.PHP.Perl等语言编写的程序运行在服务器上:Django是一个Web程 ...
- HTTPS握手过程
HTTPS在HTTP的基础上加入了SSL协议,SSL依靠证书来验证服务器的身份,并为浏览器和服务器之间的通信加密.具体是如何进行加密,解密,验证的,且看下图,下面的称为一次握手. 1. 客户端发起HT ...
- HDU 1358 Period(KMP计算周期)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1358 题目大意:给你一串字符串,判断字符串的前缀是否由某些字符串多次重复而构成. 也就是,从第1个字母 ...
- DNS区域传送漏洞的安全案例
DNS区域传送(DNS zone transfer)指的是一台备用服务器使用来自主服务器的数据刷新自己的域(zone)数据库.这为运行中的DNS服务提供了一定的冗余度,其目的是为了防止主的域名服务 ...