[BZOJ3142][HNOI2013]数列(组合数学)
3142: [Hnoi2013]数列
Time Limit: 3 Sec Memory Limit: 128 MB
Submit: 1721 Solved: 854
[Submit][Status][Discuss]Description
小
T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨。股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N。在疯涨的K天中小T观察
到:除第一天外每天的股价都比前一天高,且高出的价格(即当天的股价与前一天的股价之差)不会超过M,M为正整数。并且这些参数满足M(K-
1)<N。
小T忘记了这K天每天的具体股价了,他现在想知道这K天的股价有多少种可能Input
只有一行用空格隔开的四个数:N、K、M、P。对P的说明参见后面“输出格式”中对P的解释。
输入保证20%的数据M,N,K,P≤20000,保证100%的数据M,K,P≤109,N≤1018 。Output
仅包含一个数,表示这K天的股价的可能种数对于P的模值。【输入输出样例】
Sample Input
7 3 2 997Sample Output
16
【样例解释】
输出样例的16表示输入样例的股价有16种可能:
{1,2,3},{1,2,4},{1,3,4},{1,3,5}, {2,3,4},{2,3,5},{2,4,5},{2,4,6},
{3,4,5},{3,4,6},{3,5,6},{3,5,7},{4,5,6},{4,5,7},{4,6,7},{5,6,7}HINT
Source
只能说太妙了。如果考虑枚举每一天的股价的话,由于后一天的受到前一天的影响,所以统计起来非常麻烦。既然题目要求的是每个增量不超过m,那为什么不从增量的角度考虑呢?题目"$m*(k-1) \leqslant n$"就是在提示这一点。
有了这个保证,我们可以确定合法的增量序列数为$m^{k-1}$,故共有$m^{k-1}*(k-1)$个数。由于每个数出现次数相同,所以根据等差数列即可求解。
https://blog.csdn.net/xieguofu2014/article/details/50285219
连乘式注意取模!注意取模!注意取模!
#include<cstdio>
#include<algorithm>
#include<cstring>
typedef long long ll;
using namespace std; ll m,n,k,p,ans; ll ksm(ll a,ll b){
ll res;
for (res=; b; a=(a*a)%p,b>>=)
if (b & ) res=(res*a)%p;
return res;
} int main(){
freopen("seq.in","r",stdin);
freopen("seq.out","w",stdout);
scanf("%lld%lld%lld%lld",&n,&k,&m,&p);
printf("%lld\n",(n%p*ksm(m%p,k-)%p-ksm(m%p,k-)*(k-)%p*(((m+)*m/)%p)%p+p)%p);
return ;
}
[BZOJ3142][HNOI2013]数列(组合数学)的更多相关文章
- BZOJ3142 HNOI2013数列(组合数学)
考虑差分序列.每个差分序列的贡献是n-差分序列的和,即枚举首项.将式子拆开即可得到n*mk-1-Σi*cnt(i),cnt(i)为i在所有差分序列中的出现次数之和.显然每一个数出现次数是相同的,所以c ...
- BZOJ3142 [Hnoi2013]数列 【组合数学】
题目链接 BZOJ3142 题解 题意:选一个正整数和\(K - 1\)个\([1,M]\)中的数,使得总和小于等于\(N\),求方案数模\(P\) 题目中\(K(M - 1) < N\)的限制 ...
- BZOJ3142 [Hnoi2013]数列
Description 小 T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨.股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N.在疯涨的K天中小T观察 到:除第一天外每天的股价都 ...
- bzoj千题计划293:bzoj3142: [Hnoi2013]数列
http://www.lydsy.com/JudgeOnline/problem.php?id=3142 如果已知数列的差分数列a[1]~a[k-1] 那么这种差分方式对答案的贡献为 N-Σ a[i] ...
- [BZOJ3142][HNOI2013]数列(组合)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=3142 分析: 考虑差值序列a1,a2,...,ak-1 那么对于一个确定的差值序列,对 ...
- bzoj3142[Hnoi2013]数列 组合
Description 小 T最近在学着买股票,他得到内部消息:F公司的股票将会疯涨.股票每天的价格已知是正整数,并且由于客观上的原因,最多只能为N.在疯涨的K天中小T观察 到:除第一天外每天的股价都 ...
- Luogu P3228 HNOI2013 数列 组合数学
题面 看了题解的推导发现其实并不复杂,但是如果你想要用多项式或者组合数求解的话,就GG了 其实如果把式子列出来的话,不需要怎么推导就能算出来,关键是要想到这个巧妙的式子. 设\(b_i=a_{i+1} ...
- 【BZOJ3142】[HNOI2013]数列(组合计数)
[BZOJ3142][HNOI2013]数列(组合计数) 题面 BZOJ 洛谷 题解 唯一考虑的就是把一段值给分配给\(k-1\)天,假设这\(k-1\)天分配好了,第\(i\)天是\(a_i\),假 ...
- 【BZOJ3142】[HNOI2013]数列
[BZOJ3142][HNOI2013]数列 题面 洛谷 bzoj 题解 设第\(i\)天的股价为\(a_i\),记差分数组\(c_i=a_{i+1}-a_i\) 则 \[ Ans=\sum_{c_1 ...
随机推荐
- php通过composer添加一个包以后,无法通过git将这个包的代码文件提交上去
实际上是因为 vender 包中包含 有.git 文件,是composer 下载时下载了 该项目的github源码. 就是参数 源码优先 --prefer-source composer update ...
- jQuery实现简单前端搜索功能
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- TCP 传输控制协议(转)
开头先说几个协议: IP:网际协议 TCP:传输控制协议 Http:超文本传输协议 AMQP:高级消息队列协议 一:TCP是什么? TCP(Transmission Control Protocol ...
- 【IDEA】IDEA设置新建文件的模板
今天在IDEA中新建JS文件的时候想着也像WebStorm一样可以显示作者和时间,所以就研究了下在IDEA中修改文件创建时的模板. 点击settings找到File and Code Template ...
- thinkphp 5.0 代码执行漏洞
https://github.com/vulhub/vulhub/blob/master/thinkphp/5-rce docker-compose -f /home/root/compose.yml ...
- 2017-2018 ACM-ICPC, NEERC, Southern Subregional Contest, qualification stage
2017-2018 ACM-ICPC, NEERC, Southern Subregional Contest, qualification stage A. Union of Doubly Link ...
- angular项目中使用Primeng
1.第一步把依赖添加到项目中 npm install primeng --save npm install @angular/animations --save npm install font-aw ...
- python模块之xml.etree.ElementTree
xml.etree.ElementTree用于解析和构建XML文件 <?xml version="1.0"?> <data> <country nam ...
- scrollreveal(页面滚动显示动画插件支持手机)
scrollreveal.js是一款可以轻易实现桌面和移动浏览器元素随页面滚动产生动画的js插件.该插件通过配置可以在页面滚动,元素进入视口时产生炫酷的动画效果,同时还支持元素的3D效果,非常的实用. ...
- [Spring Data JPA问题]Executing an update/delete query; nested exception is javax.persistence.TransactionRequiredException
JPQL如下: @Modifying(clearAutomatically = true) @Query("UPDATE SyncTestFromTKDO SET stuAns = '' w ...