转载自:http://eletva.com/tower/?p=186

有关Loss Function(LF),只想说,终于写了

一、Loss Function

什么是Loss Function?wiki上有一句解释我觉得很到位,引用一下:The loss function quantifies the amount by which the prediction deviates from the actual values。Loss Function中文损失函数,适用于用于统计,经济,机器学习等领域,虽外表形式不一,但其本质作用应是唯一的,即用于衡量最优的策略。本章只从机器学习(ML)领域来对其进行阐述,机器学习其实是个不停的模拟现实的过程,比如无人驾驶车,语音识别,流感预测,天气预报,经济周期行为等众多领域,是互联网发展过程中“科学家”(暂且这么称呼吧)对于人类文明进步的另一个贡献,其本质就是要建立一个数学模型用于模拟现实,越接近真实越好,那么转化为数学语言即LF越小越好,因为LF值代表着现实与学习预测的差距,这个不停的缩小LF值的过程就称为优化,如果理解这些的话,就不难理解优化问题对于ML来说的重要性了,如水之于鱼,魂之于人!

二、几种Loss Function概述

如上一节所述,LF的概念来源于机器学习,同时我们也知道机器学习的应用范围相当广泛,几乎可以涵盖整个社会领域,那么自然不同的领域多少会有不同的做法,这里介绍在一般的机器学习算法中常见的几种,具有概括性

2.1 一般形式

J(w)=∑iL(mi(w))+λR(w)

LF分为两部分:L+R,L表示loss term,其中mi(w)=y(i)wTxi,y(i)∈{−1,1},w表示学习出来的权重,该公式的作用很明显了,用来收集现实与学习结果的差距,是LF的核心部分,LF的不同大部分也是指的loss
term的不同;R表示范式,范式存在的意思是进行约束,以防止优化过偏。

2.2 一般的loss term有5种,分别用于5种常见的机器学习算法

Gold Standard(标准式)于理想sample,这种一般很少有实践场景,这个方法的作用更多的是用来衡量其他LF的效用;Hinge于soft-margin svm算法;log于LR算法(Logistric Regression);squared loss于线性回归(Liner Regression)和Boosting。

1)Gold Standard loss,一般我们称这个LF为L01,从公式中可以看出该公式的主要职责是在统计多少个错误的case,很明显现实数据不允许如此简单的统计方式

从公式我们可以很清楚的看出,当m<0的时候L=1,m<0说明预测失败,那么Loss则加1,这样将错误累加上去,就是Gold Standard loss的核心思想。

2)hinge loss,常用于“maximum-margin”的算法,公式如下

l(y)=max(0,1−mi(w))

这个公式也很好理解,其中mi(w)在前面介绍过,表示样本i在模型下的预测值和样本i的类标记{-1,1}的乘积,这个乘积可以用来检验预测与真实结果是否一致来表示分类是否正确,当乘积大于0时表示分类正确,反之亦然。

3) log loss(一般又称为基于最大似然的负log loss)

likelihood=

l(y)=−likelihood

其中 是log函数

最大似然思想指的是使得某种情况发生的概念最大的思想,根据LR的思想(参考这篇文章logistic回归深入篇(1)),我们知道g(w)对应的simod图,其将实域上的值映射到区间{0,1},因此我们可以把g(w)看作事件A发生的概率,那么1-g(w)可以看作事件A不发生的概率,那么公式likelihood表达的含义就很明显了,y也是一个概率值,可以看做是对事件A与A逆的分量配额,当然我们的期望是A发生的可能越大越好,A逆发生的可能越小越好!因此likelihood是一个max的过程,而loss是一个min的过程,因此log
loss是负的likelihood。

4)square loss

这个loss很好理解,就是平方差,loss 一般也成为最小二乘法

5)boosting loss

这个loss主要是基于指数函数的loss function。

三、几种Loss Function的效果对比

上图是多LF的效果对比图,其中蓝色的是Gold loss,可以看作水平基线,其他的loss的效果可以基于与它的比较结果,首先,红色的是Hinge loss,黄色的是log loss,绿色的是boosting loss,黑色的是square loss,从上图可以看出以下结论: Hinge,log对于噪音函数不敏感,因为当m<0时,他们的反应不大,而黑线与绿线可能更爱憎分明,尤其是黑线,因此,在很多线性分类问题中,square loss也是很常见的LF之一。

白话machine learning之Loss Function的更多相关文章

  1. Machine Learning/Introducing Logistic Function

    Machine Learning/Introducing Logistic Function 打算写点关于Machine Learning的东西, 正好也在cnBlogs上新开了这个博客, 也就更新在 ...

  2. [machine learning] Loss Function view

    [machine learning] Loss Function view 有关Loss Function(LF),只想说,终于写了 一.Loss Function 什么是Loss Function? ...

  3. [Machine Learning] 浅谈LR算法的Cost Function

    了解LR的同学们都知道,LR采用了最小化交叉熵或者最大化似然估计函数来作为Cost Function,那有个很有意思的问题来了,为什么我们不用更加简单熟悉的最小化平方误差函数(MSE)呢? 我个人理解 ...

  4. machine learning(11) -- classification: advanced optimization 去求cost function最小值的方法

    其它的比gradient descent快, 在某些场合得到广泛应用的求cost function的最小值的方法 when have a large machine learning problem, ...

  5. 《Machine Learning in Action》—— 白话贝叶斯,“恰瓜群众”应该恰好瓜还是恰坏瓜

    <Machine Learning in Action>-- 白话贝叶斯,"恰瓜群众"应该恰好瓜还是恰坏瓜 概率论,可以说是在机器学习当中扮演了一个非常重要的角色了.T ...

  6. 【机器学习Machine Learning】资料大全

    昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...

  7. 损失函数(Loss Function) -1

    http://www.ics.uci.edu/~dramanan/teaching/ics273a_winter08/lectures/lecture14.pdf Loss Function 损失函数 ...

  8. Machine Learning Algorithms Study Notes(2)--Supervised Learning

    Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 22 ...

  9. 机器学习(Machine Learning)&深度学习(Deep Learning)资料

    <Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...

随机推荐

  1. 常见HTTP状态(304,)

    一.1XX(临时响应) 表示临时响应并需要请求者继续执行操作的状态码. 100(继续) 请求者应当继续提出请求.服务器返回此代码表示:已经收到请求的第一部分,正在等待其余部分. 101(切换协议) 请 ...

  2. java socket 判断Socket连接失效

    要判断socket连接链路是否可用时,不能通过socket.isClosed() 和 socket.isConnected() 方法判断,要通过心跳包 socket.sendUrgentData(0x ...

  3. 解决boot空间不足问题

    uname -a :查看现在系统信息,内核版本 dpkg --get-selections |grep linux-image : 查看内核列表 sudo apt-get remove linux-i ...

  4. Verilog HDL Test Bench

    As digital systems becomes more complex,it becomes increasingly important to verify the functionalit ...

  5. os模块、文件压缩 、匹配文件后缀名:fnmatch glob

    一.os模块 os模块:是python是系统交互的模块 import os # 0平台信息的一些操作 python是夸平台的,所以内部兼容了不同的平台 1. os.name # 操作系统 nt是win ...

  6. 小练习:Two Sum

    1.example Given nums = [, , , ], target = , Because nums[] + nums[] = + = , , ]. 2.solve class Solut ...

  7. BZOJ2259 [Oibh]新型计算机

    话说hzwer你在坑爹?... 我按照你的建图交了上去,发现WA. 开始检查= =...过了好久,突然觉得画风不对...hzwer您建图错了啊!!! 后来看了看zky的终于知道了怎么回事>_&l ...

  8. eclipse背景设置什么颜色缓解眼睛疲劳之一

    Eclipse操作界面默认颜色为白色.对于我们长期使用电脑编程的人来说,白色很刺激我们的眼睛,如果把颜色改成绿色的颜色就会缓解眼睛的疲劳. 设置方法如下: 1.打开window->Prefere ...

  9. OpenMP学习

    当数据量较大或者时间复杂度高的时候,盲目地等待结果,开发效率极低. 听说OpenMP可以多核并行运算,加快运行速度.整理了一些OpenMP的资料,以待学习. 1.openMP的一点使用经验 2.Ope ...

  10. js 多个倒计时,毫秒倒计时

    其实主要是借鉴了了这篇文的写法(http://tuzwu.iteye.com/blog/819081),俺稍作了修改,以便更适合我的需要: 实现功能:调用一个函数,传入html元素的id,和一个截止时 ...