基本思想:

给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的k个实例,这k个实例的多数属于某个类,就把该输入实例分为这个类


距离度量:

特征空间中两个实例点的距离是两个实例点相似程度的反映,一般常用欧氏距离,更一般的有行内公式\(L_p\)或者Minkowski距离

\[L_p(x_i,x_j)=(\sum_{l=1}^{n}|x_i^{(l)}-x_j^{(l)}|^p)^{\frac{1}{p}}
\]

  • 当\(p=1\)时,为曼哈顿距离,\(L_1(x_i,x_j)=\sum_{l=1}{n}|x_i{(l)}-x_j^{(l)}|\)

  • 当\(p=2\)时,为欧式距离,\(L_2(x_i,x_j)=(\sum|x_i{(l)}-x_j{(l)}|2){\frac{1}{2}}\)

  • 当\(p=\infty\)时,它是各个坐标距离的最大值,\(L_\infty(x_i,x_j)=max_l|x_i{(l)}-x_j{(l)}|\)

机器学习实战第二章代码

import numpy as np
def classify0(inx,dataSet,labels,k):
datasize=dataSet.shape[0]
diffmat=np.tile(inx,(datasize,1))-dataSet
sqdismat=diffmat**2
sqdist=sqdismat.sum(axis=1)
dist=sqdist**0.5
sortdistpos=dist.argsort()
labelscount=np.array([0,0,0,0])
for i in range(k):
votelabels=labels[sortdistpos[i]]
labelscount[votelabels]+=1
returnresult=labelscount.argsort()
return returnresult[-1] def dataload(filename):
file=open(filename)
ar=file.readlines()
num=len(ar)
returnMat=np.zeros((num,3))
returnLabels=[]
index=0
for line in ar:
line=line.strip()
linelist=line.split('\t')
returnMat[index,:]=linelist[0:3]
returnLabels.append(int(linelist[-1]))
index+=1
return returnMat,returnLabels def autoNorm(dataSet):
minvals=dataSet.min(0)
maxvals=dataSet.max(0)
ranges=maxvals-minvals
normDataSet=np.zeros(np.shape(dataSet))
m=dataSet.shape[0]
normDataSet=dataSet-np.tile(minvals,(m,1))
normDataSet=normDataSet/np.tile(ranges,(m,1))
return normDataSet DataMat,DataLabels=dataload('datingTestSet2.txt')
normDataMat=autoNorm(DataMat)
ratio=0.1
tep=normDataMat.shape[0]
testnum=int(tep*ratio)
print(tep,testnum)
errorcount=0
for i in range(testnum):
result=classify0(normDataMat[i,:],normDataMat[testnum:tep,:],DataLabels[testnum:tep],3)
if(result!=DataLabels[i]):
errorcount+=1
print(i," the test result is ",result,",the real result is ",DataLabels[i])
print(errorcount)
print("the error ratio is ",errorcount*1.0/testnum)

k近邻法( k-nearnest neighbor)的更多相关文章

  1. K近邻法(K-Nearest Neighbor,KNN)

    KNN是一种基本分类与回归方法,本篇只总结分类问题中的KNN. 输入:样本的特征向量,对应于特征空间中的点 输出:样本的类别,可取多类 算法思想:给定一个样本类别已知的训练数据集,对于新样本,根据其K ...

  2. 学习笔记——k近邻法

    对新的输入实例,在训练数据集中找到与该实例最邻近的\(k\)个实例,这\(k\)个实例的多数属于某个类,就把该输入实例分给这个类. \(k\) 近邻法(\(k\)-nearest neighbor, ...

  3. k近邻法(kNN)

    <统计学习方法>(第二版)第3章 3 分类问题中的k近邻法 k近邻法不具有显式的学习过程. 3.1 算法(k近邻法) 根据给定的距离度量,在训练集\(T\)中找出与\(x\)最邻近的\(k ...

  4. k近邻法

    k近邻法(k nearest neighbor algorithm,k-NN)是机器学习中最基本的分类算法,在训练数据集中找到k个最近邻的实例,类别由这k个近邻中占最多的实例的类别来决定,当k=1时, ...

  5. 《统计学习方法(李航)》讲义 第03章 k近邻法

    k 近邻法(k-nearest neighbor,k-NN) 是一种基本分类与回归方法.本书只讨论分类问题中的k近邻法.k近邻法的输入为实例的特征向量,对应于特征空间的点;输出为实例的类别,可以取多类 ...

  6. K近邻法(KNN)原理小结

    K近邻法(k-nearst neighbors,KNN)是一种很基本的机器学习方法了,在我们平常的生活中也会不自主的应用.比如,我们判断一个人的人品,只需要观察他来往最密切的几个人的人品好坏就可以得出 ...

  7. scikit-learn K近邻法类库使用小结

    在K近邻法(KNN)原理小结这篇文章,我们讨论了KNN的原理和优缺点,这里我们就从实践出发,对scikit-learn 中KNN相关的类库使用做一个小结.主要关注于类库调参时的一个经验总结. 1. s ...

  8. 机器学习PR:k近邻法分类

    k近邻法是一种基本分类与回归方法.本章只讨论k近邻分类,回归方法将在随后专题中进行. 它可以进行多类分类,分类时根据在样本集合中其k个最近邻点的类别,通过多数表决等方式进行预测,因此不具有显式的学习过 ...

  9. 统计学习方法(三)——K近邻法

    /*先把标题给写了.这样就能经常提醒自己*/ 1. k近邻算法 k临近算法的过程,即对一个新的样本,找到特征空间中与其最近的k个样本,这k个样本多数属于某个类,就把这个新的样本也归为这个类. 算法  ...

  10. 机器学习中 K近邻法(knn)与k-means的区别

    简介 K近邻法(knn)是一种基本的分类与回归方法.k-means是一种简单而有效的聚类方法.虽然两者用途不同.解决的问题不同,但是在算法上有很多相似性,于是将二者放在一起,这样能够更好地对比二者的异 ...

随机推荐

  1. MR案例:倒排索引

    1.map阶段:将单词和URI组成Key值(如“MapReduce :1.txt”),将词频作为value. 利用MR框架自带的Map端排序,将同一文档的相同单词的词频组成列表,传递给Combine过 ...

  2. MongoDB-与Python交互

    与python交互 点击查看官方文档 安装python包 进入虚拟环境 sudo pip install pymongo 或源码安装 python setup.py 引入包pymongo import ...

  3. mysql对数据库的备份和还原

    在对mysql数据库的某个数据库进行备份时,使用 mysqldump命令来进行操作 mysqldump -u root -p db_database_name > /[your_path.mys ...

  4. 通过window(Navicat)访问linux中的mysql数据库

    Centos安装Mysql数据库 查看我们的操作系统上是否已经安装了mysql数据库 [root@centos~]# rpm -qa | grep mysql // 这个命令就会查看该操作系统上是否已 ...

  5. SQL Server 自动备份数据脚本

    脚本: use master; go ---声明变量 declare @dbName nvarchar(max)='MG_DATA'; ),) +'_'+ DateName(hour,GetDate( ...

  6. 【深入理解JVM】:Java对象的创建、内存布局、访问定位

    对象的创建 一个简单的创建对象语句Clazz instance = new Clazz();包含的主要过程包括了类加载检查.对象分配内存.并发处理.内存空间初始化.对象设置.执行ini方法等. 主要流 ...

  7. git branch 新建,推送与删除

    在开发的许多时候我们都需要使用git提供的分支管理功能. 1.新建本地分支:git checkout -b test  新建一个名为:test 的本地分支. 2.提交本地分支:git push ori ...

  8. UART速度的问题

    1 原来UART实验的,速度被设置成9600,因为UART,在计算速度的时候带的是96002 后来一次学习的时候,ADC用到串口打数据,那么他的串口速度任然是9600,原来用UBOOT中的速 度则是1 ...

  9. jmeter-01 JMeter HTTP测试的各元件功能演示示例

    最小的测试将包括测试计划,线程组和一个或多个采样器. Jmeter HTTP测试的各元件演示示例 功能逻辑:wap官网(a.4399sy.com.hk),每个用户登录一次,发帖2次,发帖成功后注销退出 ...

  10. 重新学习MySQL数据库9:Innodb中的事务隔离级别和锁的关系

    重新学习MySQL数据库9:Innodb中的事务隔离级别和锁的关系 Innodb中的事务隔离级别和锁的关系 前言: 我们都知道事务的几种性质,数据库为了维护这些性质,尤其是一致性和隔离性,一般使用加锁 ...