HDU 1452 欧拉定理
让你求$2004^x$所有因子之和,因子之和函数是积性函数$\sigma(n)=\sum_{d|n}d=\prod_{i=0}^{m}(\sum_{j=0}^{k_i}{P_i^{j}})$可用二项式定理证明,然后2004是给定的固定数,然后该怎么求就怎么求
/** @Date : 2017-09-08 18:56:21
* @FileName: HDU 1452 欧拉定理.cpp
* @Platform: Windows
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version : $Id$
*/
#include <bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e5+20;
const double eps = 1e-8;
const LL mod = 29; LL fpow(LL a, LL n)
{
LL res = 1;
while(n)
{
if(n & 1)
res = a * res % mod;
a = a * a % mod;
n >>= 1;
}
return res;
}
int main()
{
//SUM factor = Sum(1->s)Sum(0->k)P[i]^k) 各个素因子各次和的乘积
LL n;
while(cin >> n && n)
{
LL INV2 = fpow(2, 27);
LL INV166 = fpow(166, 27);
LL ans = (((fpow(3, n + 1)-1) * INV2 % mod) * ((fpow(167, n + 1)-1) * INV166 % mod) * (fpow(2, 2 * n + 1)-1)) % mod;
printf("%lld\n", ans);
}
return 0;
}
HDU 1452 欧拉定理的更多相关文章
- HDU 1452 Happy 2004 (逆元+快速幂+积性函数)
G - Happy 2004 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Subm ...
- HDU 4704 欧拉定理
题目看了很久没看懂 就是给你数n,一种函数S(k),S(k)代表把数n拆成k个数的不同方案数,注意如n=3,S(2)是算2种的,最后让你求S(1~n)的和模1e9+7,n<=1e100000.那 ...
- HDU 1452 (约数和+乘法逆元)
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1452 题目大意:求2004^X所有约数和,结果mod 29. 解题思路: ①整数唯一分解定理: 一个 ...
- HDU 1452
http://acm.hdu.edu.cn/showproblem.php?pid=1452 原来真心没见过这种题,不会做,非常帅 gcd(a,b)==1 && s(a,b)==s(a ...
- hdu 2462(欧拉定理+高精度快速幂模)
The Luckiest number Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
- hdu 1452 Happy 2004 膜拜这推导过程
Happy 2004 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total ...
- HDU 1452 Happy 2004(因子和的积性函数)
题目链接 题意 : 给你一个X,让你求出2004的X次方的所有因子之和,然后对29取余. 思路 : 原来这就是积性函数,点这里这里这里,这里讲得很详细. 在非数论的领域,积性函数指所有对于任何a,b都 ...
- hdu 1452 Happy 2004
因子和: 的因子是1,2,3,6; 6的因子和是 s(6)=1+2+3+6=12; 的因子是1,2,4,5,10,20; 20的因子和是 s(20)=1+2+4+5+10+20=42; 的因子是1,2 ...
- Hdu 1452 Happy 2004(除数和函数,快速幂乘(模),乘法逆元)
Problem Description Considera positive integer X,and let S be the sum of all positive integer diviso ...
随机推荐
- 《我是IT小小鸟》读笔
兴趣是第一原则.一定要根据自己的兴趣确定发展方向,不要盲目从众和跟风.没有一个人的经历是可以复制的,多思考,不要照搬他人的做法,学习一下想法还是可以的,具体方法因人而异.学习软件技术时,不仅在知识节点 ...
- App接口如何保证安全
微信开发或者高德地图,百度地图什么的api要使用,使用之前都需要注册一个账号,然后系统会给你一个key,然后调用api的时候把key传给服务器. 平常公司内部开发项目时,直接用mvc为app客户端提供 ...
- Java final用法
//继承弊端:打破了封装性. /* final关键字: 1,final是一个修饰符,可以修饰类,方法,变量. 2,final修饰的类不可以被继承. 3,final修饰的方法不可以被覆盖. 4,fina ...
- 写在SVM之前——凸优化与对偶问题
SVM之问题形式化 SVM之对偶问题 SVM之核函数 SVM之解决线性不可分 >>>写在SVM之前——凸优化与对偶问题 本篇是写在SVM之前的关于优化问题的一点知识,在SVM中会用到 ...
- The goal you specified requires a project to execute but there is no POM in this directory
[INFO] Scanning for projects... [INFO] ------------------------------------------------------------- ...
- 使用.bat文件运行ant的build.xml
1.新建一个txt文件 2.复制下面命令到txt文件 echo "Start build..." call ant.bat -f "E:\build.xml" ...
- Java多线程 -sleep 用法详解
阿里面试官问我这个问题,我仔细总结了一下: 参考:sleep.yield.wait.join的区别(阿里面试) 我们可能经常会用到 Thread.Sleep 函数来使线程挂起一段时间.那么你有没有正确 ...
- java 使用volatile实现线程数据的共享
java 使用volatile实现线程数据的共享 直接上代码看效果: public class VolatileTest extends Thread { private volatile boole ...
- [LeetCode] PathSum
Given a binary tree and a sum, determine if the tree has a root-to-leaf path such that adding up all ...
- 洛谷P3601签到题(欧拉函数)
题目背景 这是一道签到题! 建议做题之前仔细阅读数据范围! 题目描述 我们定义一个函数:qiandao(x)为小于等于x的数中与x不互质的数的个数. 这题作为签到题,给出l和r,要求求. 输入输出格式 ...