[抄题]:

In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum.

Each subarray will be of size k, and we want to maximize the sum of all 3*k entries.

Return the result as a list of indices representing the starting position of each interval (0-indexed). If there are multiple answers, return the lexicographically smallest one.

Example:

Input: [1,2,1,2,6,7,5,1], 2
Output: [0, 3, 5]
Explanation: Subarrays [1, 2], [2, 6], [7, 5] correspond to the starting indices [0, 3, 5].
We could have also taken [2, 1], but an answer of [1, 3, 5] would be lexicographically larger.

[暴力解法]:

时间分析:

空间分析:

[优化后]:

时间分析:

空间分析:

[奇葩输出条件]:

[奇葩corner case]:

note中已经提示了length,就只需要考虑k k&length的关系就了

把“前i项”初始化为“第i项”,方便直接做差

for (int i = 1; i <= n; i++) {
sums[i] = sums[i - 1] + nums[i - 1];
}

[思维问题]:

不知道为什么要用DP:每次都保存之前一组的状态,然后一个个向前更新和比价。

求一组固定为k长度的数组时可用。

//总和=本组和+之前组的和=本组最后之和-本组第一之和+之前的(从j - k开始的)dp求和值
int curSum = sums[j] - sums[j - k] + dp[i - 1][j - k];

[英文数据结构或算法,为什么不用别的数据结构或算法]:

dp数组里存储了结果,可以通过不断输入index来把结果取出来:

int index = n;
for (int i = 2; i >= 0; i--) {
res[i] = pos[i + 1][index];
System.out.println("index = " +index);
System.out.println("res[i] = pos[i + 1][index] = " +res[i]); index = res[i];
System.out.println("index = " +index);
System.out.println("----------------"); }

[一句话思路]:

按照第123组来操作,

 总和=本组和+之前所有组的和

[输入量]:空: 正常情况:特大:特小:程序里处理到的特殊情况:异常情况(不合法不合理的输入):

[画图]:

[一刷]:

  1. 序列型dp所有的有关数组、有关二维数组都要增加1个单位,调用的时候也要+1,因为第一位拿来初始化了。不初始化就是默认为0

[二刷]:

  1. 发现把第0位给去掉了 不知道为何:
[1,2,1,2,6,7,5,1]
2 i = 1
i - 1 = 0
nums[i - 1] = 1
sum[i - 1] = 0
sum[i - 1] = 1
---------------
i = 2
i - 1 = 1
nums[i - 1] = 2
sum[i - 1] = 0
sum[i - 1] = 2
---------------
i = 3
i - 1 = 2
nums[i - 1] = 1
sum[i - 1] = 0
sum[i - 1] = 1
---------------
i = 4
i - 1 = 3
nums[i - 1] = 2
sum[i - 1] = 0
sum[i - 1] = 2
---------------
i = 5
i - 1 = 4
nums[i - 1] = 6
sum[i - 1] = 0
sum[i - 1] = 6
---------------
i = 6
i - 1 = 5
nums[i - 1] = 7
sum[i - 1] = 0
sum[i - 1] = 7
---------------
i = 7
i - 1 = 6
nums[i - 1] = 5
sum[i - 1] = 0
sum[i - 1] = 5
---------------
i = 8
i - 1 = 7
nums[i - 1] = 1
sum[i - 1] = 0
sum[i - 1] = 1
---------------

[三刷]:

[四刷]:

[五刷]:

[五分钟肉眼debug的结果]:

[总结]:

dp是存储一组状态的,可以拿来调用

[复杂度]:Time complexity: O(n) Space complexity: O(n)

[算法思想:迭代/递归/分治/贪心]:

[关键模板化代码]:

[其他解法]:

[Follow Up]:

[LC给出的题目变变变]:

[代码风格] :

[是否头一次写此类driver funcion的代码] :

class Solution {
public int[] maxSumOfThreeSubarrays(int[] nums, int k) {
//ini: res[3], pos[4][n + 1], dp[4][n + 1]
int n = nums.length;
int[] res = new int[3];
int[] sum = new int[n + 1];
int[][] pos = new int[4][n + 1];
int[][] dp = new int[4][n + 1]; //cc
if (nums == null || nums.length < 3 * k) return res; //ini:sum
for (int i = 1; i <= n; i++) {
int j = i - 1;
System.out.println("i = "+i);
System.out.println("i - 1 = "+j);
System.out.println("nums[i - 1] = "+nums[i - 1]);
System.out.println("sum[i - 1] = "+sum[i - 1]); sum[i - 1] = sum[i - 1] + nums[i - 1]; System.out.println("sum[i - 1] = "+sum[i - 1]);
System.out.println("---------------");
} for (int i = 1; i <= 3; i++) {
for (int j = k * i; j <= n; j++) {
int curSum = sum[j] - sum[j - k] + dp[i - 1][j - k];
if (curSum > dp[i][j - 1]) {
dp[i][j] = curSum;
pos[i][j] = j - k;
}else {
dp[i][j] = dp[i][j - 1];
pos[i][j] = pos[i][j - 1];
}
}
} //retrieve the answer
int index = n;
for (int i = 2; i >= 0; i--) {
//
res[i] = pos[i + 1][index];
index = res[i];
}
//return
return res;
}
}

689. Maximum Sum of 3 Non-Overlapping Subarrays三个不重合数组的求和最大值的更多相关文章

  1. [leetcode]689. Maximum Sum of 3 Non-Overlapping Subarrays三个非重叠子数组的最大和

    In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum. E ...

  2. 689. Maximum Sum of 3 Non-Overlapping Subarrays

    In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum. E ...

  3. LeetCode 689. Maximum Sum of 3 Non-Overlapping Subarrays

    原题链接在这里:https://leetcode.com/problems/maximum-sum-of-3-non-overlapping-subarrays/ 题目: In a given arr ...

  4. [LeetCode] 689. Maximum Sum of 3 Non-Overlapping Subarrays 三个非重叠子数组的最大和

    In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum. E ...

  5. 【leetcode】689. Maximum Sum of 3 Non-Overlapping Subarrays

    题目如下: In a given array nums of positive integers, find three non-overlapping subarrays with maximum ...

  6. 【LeetCode】689. Maximum Sum of 3 Non-Overlapping Subarrays 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址: https://leetcode.com/problems/maximum- ...

  7. [LeetCode] Maximum Sum of 3 Non-Overlapping Subarrays 三个非重叠子数组的最大和

    In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum. E ...

  8. [Swift]LeetCode689. 三个无重叠子数组的最大和 | Maximum Sum of 3 Non-Overlapping Subarrays

    In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum. E ...

  9. [Swift]LeetCode1031. 两个非重叠子数组的最大和 | Maximum Sum of Two Non-Overlapping Subarrays

    Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping ...

随机推荐

  1. jdk1.8新特性应用之Collection

    之前说了jdk1.8几个新特性,现在看下实战怎么玩,直接看代码: public List<MSG_ConMediaInfo> getConMediaInfoList(String live ...

  2. python3api-ms-win-crt-runtime-l1-1-0.dll丢失解决方法

    先记录一个之前遇到的问题: 在安装了pycharm后,发现 通过上网发现,其实就是没有安装pip和setuptools,其实 Python3以后都是默认安装pip的,所以最后的解决办法是将我目前的Py ...

  3. 在Mac OS上搭建Python的开发环境

    本文转载自:http://www.jb51.net/article/76931.htm 一. 安装python mac系统其实自带了一个python的执行执行环境,用来运行python还行,但是开发可 ...

  4. java代码数组求平均值,最大值,最小值

    (测试类) package com.badu; public class Tste { public static void main(String[] args) { Class5 sa=new C ...

  5. Thread之六:线程创建方法

    1.继承Thread类,重写该类的run()方法. 2.实现Runnable接口,并重写该接口的run()方法,该run()方法同样是线程执行体,创建Runnable实现类的实例,并以此实例作为Thr ...

  6. pyc是什么

    python是解释型语言,需要解释器对程序逐行做出解释,然后直接运行. C语言是编译型语言,PC不需要翻译,直接执行就可以了. java也是解释型语言,不过速度可以跟编译型媲美. 用java举例,ja ...

  7. (转) docker跨主机 macvlan 网络配置

    原文链接 https://github.com/alfredhuang211/study-docker-doc/blob/master/docker%E8%B7%A8%E4%B8%BB%E6%9C%B ...

  8. 【UVA】1594 Ducci Sequence(纯模拟)

    题目 题目     分析 真的快疯了,中午交了一题WA了好久,最后发现最后一个数据不能加\n,于是这次学乖了,最后一组不输出\n,于是WA了好几发,最后从Udebug发现最后一组是要输出的!!!   ...

  9. CentOS7 系统菜单中添加快捷方式

    一,在桌面新建一个文件 文件名随意,但必须带有.desktop的后缀名, 以Eclipse为例 vi /usr/share/applications/eclipse.desktop 二,在文件中写入如 ...

  10. java后台读取配置文件中key与value -----demo2

    /** * * @Title: getValue * @Description: TODO * @param key * @return import java.util.Properties; * ...