[抄题]:

In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum.

Each subarray will be of size k, and we want to maximize the sum of all 3*k entries.

Return the result as a list of indices representing the starting position of each interval (0-indexed). If there are multiple answers, return the lexicographically smallest one.

Example:

Input: [1,2,1,2,6,7,5,1], 2
Output: [0, 3, 5]
Explanation: Subarrays [1, 2], [2, 6], [7, 5] correspond to the starting indices [0, 3, 5].
We could have also taken [2, 1], but an answer of [1, 3, 5] would be lexicographically larger.

[暴力解法]:

时间分析:

空间分析:

[优化后]:

时间分析:

空间分析:

[奇葩输出条件]:

[奇葩corner case]:

note中已经提示了length,就只需要考虑k k&length的关系就了

把“前i项”初始化为“第i项”,方便直接做差

for (int i = 1; i <= n; i++) {
sums[i] = sums[i - 1] + nums[i - 1];
}

[思维问题]:

不知道为什么要用DP:每次都保存之前一组的状态,然后一个个向前更新和比价。

求一组固定为k长度的数组时可用。

//总和=本组和+之前组的和=本组最后之和-本组第一之和+之前的(从j - k开始的)dp求和值
int curSum = sums[j] - sums[j - k] + dp[i - 1][j - k];

[英文数据结构或算法,为什么不用别的数据结构或算法]:

dp数组里存储了结果,可以通过不断输入index来把结果取出来:

int index = n;
for (int i = 2; i >= 0; i--) {
res[i] = pos[i + 1][index];
System.out.println("index = " +index);
System.out.println("res[i] = pos[i + 1][index] = " +res[i]); index = res[i];
System.out.println("index = " +index);
System.out.println("----------------"); }

[一句话思路]:

按照第123组来操作,

 总和=本组和+之前所有组的和

[输入量]:空: 正常情况:特大:特小:程序里处理到的特殊情况:异常情况(不合法不合理的输入):

[画图]:

[一刷]:

  1. 序列型dp所有的有关数组、有关二维数组都要增加1个单位,调用的时候也要+1,因为第一位拿来初始化了。不初始化就是默认为0

[二刷]:

  1. 发现把第0位给去掉了 不知道为何:
[1,2,1,2,6,7,5,1]
2 i = 1
i - 1 = 0
nums[i - 1] = 1
sum[i - 1] = 0
sum[i - 1] = 1
---------------
i = 2
i - 1 = 1
nums[i - 1] = 2
sum[i - 1] = 0
sum[i - 1] = 2
---------------
i = 3
i - 1 = 2
nums[i - 1] = 1
sum[i - 1] = 0
sum[i - 1] = 1
---------------
i = 4
i - 1 = 3
nums[i - 1] = 2
sum[i - 1] = 0
sum[i - 1] = 2
---------------
i = 5
i - 1 = 4
nums[i - 1] = 6
sum[i - 1] = 0
sum[i - 1] = 6
---------------
i = 6
i - 1 = 5
nums[i - 1] = 7
sum[i - 1] = 0
sum[i - 1] = 7
---------------
i = 7
i - 1 = 6
nums[i - 1] = 5
sum[i - 1] = 0
sum[i - 1] = 5
---------------
i = 8
i - 1 = 7
nums[i - 1] = 1
sum[i - 1] = 0
sum[i - 1] = 1
---------------

[三刷]:

[四刷]:

[五刷]:

[五分钟肉眼debug的结果]:

[总结]:

dp是存储一组状态的,可以拿来调用

[复杂度]:Time complexity: O(n) Space complexity: O(n)

[算法思想:迭代/递归/分治/贪心]:

[关键模板化代码]:

[其他解法]:

[Follow Up]:

[LC给出的题目变变变]:

[代码风格] :

[是否头一次写此类driver funcion的代码] :

class Solution {
public int[] maxSumOfThreeSubarrays(int[] nums, int k) {
//ini: res[3], pos[4][n + 1], dp[4][n + 1]
int n = nums.length;
int[] res = new int[3];
int[] sum = new int[n + 1];
int[][] pos = new int[4][n + 1];
int[][] dp = new int[4][n + 1]; //cc
if (nums == null || nums.length < 3 * k) return res; //ini:sum
for (int i = 1; i <= n; i++) {
int j = i - 1;
System.out.println("i = "+i);
System.out.println("i - 1 = "+j);
System.out.println("nums[i - 1] = "+nums[i - 1]);
System.out.println("sum[i - 1] = "+sum[i - 1]); sum[i - 1] = sum[i - 1] + nums[i - 1]; System.out.println("sum[i - 1] = "+sum[i - 1]);
System.out.println("---------------");
} for (int i = 1; i <= 3; i++) {
for (int j = k * i; j <= n; j++) {
int curSum = sum[j] - sum[j - k] + dp[i - 1][j - k];
if (curSum > dp[i][j - 1]) {
dp[i][j] = curSum;
pos[i][j] = j - k;
}else {
dp[i][j] = dp[i][j - 1];
pos[i][j] = pos[i][j - 1];
}
}
} //retrieve the answer
int index = n;
for (int i = 2; i >= 0; i--) {
//
res[i] = pos[i + 1][index];
index = res[i];
}
//return
return res;
}
}

689. Maximum Sum of 3 Non-Overlapping Subarrays三个不重合数组的求和最大值的更多相关文章

  1. [leetcode]689. Maximum Sum of 3 Non-Overlapping Subarrays三个非重叠子数组的最大和

    In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum. E ...

  2. 689. Maximum Sum of 3 Non-Overlapping Subarrays

    In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum. E ...

  3. LeetCode 689. Maximum Sum of 3 Non-Overlapping Subarrays

    原题链接在这里:https://leetcode.com/problems/maximum-sum-of-3-non-overlapping-subarrays/ 题目: In a given arr ...

  4. [LeetCode] 689. Maximum Sum of 3 Non-Overlapping Subarrays 三个非重叠子数组的最大和

    In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum. E ...

  5. 【leetcode】689. Maximum Sum of 3 Non-Overlapping Subarrays

    题目如下: In a given array nums of positive integers, find three non-overlapping subarrays with maximum ...

  6. 【LeetCode】689. Maximum Sum of 3 Non-Overlapping Subarrays 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 题目地址: https://leetcode.com/problems/maximum- ...

  7. [LeetCode] Maximum Sum of 3 Non-Overlapping Subarrays 三个非重叠子数组的最大和

    In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum. E ...

  8. [Swift]LeetCode689. 三个无重叠子数组的最大和 | Maximum Sum of 3 Non-Overlapping Subarrays

    In a given array nums of positive integers, find three non-overlapping subarrays with maximum sum. E ...

  9. [Swift]LeetCode1031. 两个非重叠子数组的最大和 | Maximum Sum of Two Non-Overlapping Subarrays

    Given an array A of non-negative integers, return the maximum sum of elements in two non-overlapping ...

随机推荐

  1. tar 打包处理文件

    基本格式:tar [Options] file_archive //注意tar的第一参数必须为命令选项,即不能直接接待处理文件 Option是由三部分组成,分别是操作类型(创建,查看,解压),压缩处理 ...

  2. 使用zabbix监控mysql

    系统版本: centos6 x86_64 mysql版本: mysql5.6 实施目的: 监控mysql 客户端配置: 1.准备工作:搭建zabbix服务,使服务端客户端连接成功,并有基础监控项 2. ...

  3. 常见企业IT支撑【3、SVN代码版本控制系统】

    代码版本控制系统有人喜欢用SVN,有人喜欢用GIT     1.环境   os:centos7 apache:2.4.6 python:2.7  --自带 submin2:2.2.1   2.安装ap ...

  4. dateframe行列插入和删除操作

    ar = np.array(list("ABCDEFG")) # array只是Convert,默认会copy源值.asarray也是Convert,如果源值是array则不cop ...

  5. proxool 连接池

    今天配置proxool 连接池,发现可配置属性非常多,以前也只是用,没总结过,今天查了下网上的资料,总结一下 方便你我.其实网上很多英文资料都很全,网上很多人就是考翻译老外的文章赚些流量,其实也没啥意 ...

  6. Eclipse中添加web dynamic project【菜鸟学JAVA】

    很多eclipse版本是不能直接新建web dynamic project的,需要从网上找插件或更新.我的Eclipse的版本是(Version: 3.7.0) 比较方便的是在Help → Insta ...

  7. flv格式详解+实例剖析

    简介 FLV(Flash Video)是现在非常流行的流媒体格式,由于其视频文件体积轻巧.封装播放简单等特点,使其很适合在网络上进行应用,目前主流的视频网站无一例外地使用了FLV格式.另外由于当前浏览 ...

  8. (转) docker跨主机 macvlan 网络配置

    原文链接 https://github.com/alfredhuang211/study-docker-doc/blob/master/docker%E8%B7%A8%E4%B8%BB%E6%9C%B ...

  9. Docker for windows 7 - 加载 docker images

    背景 由于之前一直是在 Linux 上面跑,所以对于docker for windows 部分不是很熟. 由于我们的合作伙伴需要在windows 上面跑我们的docker image, 所以在自己的w ...

  10. 枚举生成1~n的排序

    /*枚举生成1~n的排列*/ #include <iostream> #include<algorithm> #include<queue> #include< ...