以前用java写MR程序总不习惯写单元测试,就是查错也只是在小规模数据上跑一下程序。昨天工作时,遇到一个bug,查了好久也查出来。估计是业务逻辑上的错误。后来没办法,只好写了个单元测试,一步步跟踪,瞬间找到问题所在。所以说,工作中还是要勤快些。

 import static org.junit.Assert.assertEquals;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mrunit.mapreduce.MapDriver;
import org.apache.hadoop.mrunit.mapreduce.MapReduceDriver;
import org.apache.hadoop.mrunit.mapreduce.ReduceDriver;
import org.apache.hadoop.mrunit.types.Pair;
import org.junit.Before;
import org.junit.Test;
import com.wanda.predict.GenerateCustomerNatureFeature.NatureFeatureMappper;
import com.wanda.predict.GenerateCustomerNatureFeature.NatureReducer;
import com.wanda.predict.pojo.Settings; /**
* MapReduce 单元测试的模板 , 依赖于junit环境(junit.jar), mrunit.jar , mockito.jar
*
*/
public class MapperReducerUnitTest {
// 一些设置,与正常的mr程序一样,不过这里主要是加载一些信息。性能优化之类的就不要在单元测试里设置了。
Configuration conf = new Configuration();
//Map.class 的测试驱动类
MapDriver<LongWritable, Text, Text, Text> mapDriver;
//Reduce.class 的测试驱动类
ReduceDriver<Text, Text, Text, Text> reduceDriver;
//Map.calss 、 Reduce.class转接到一起的流程测试驱动
MapReduceDriver<LongWritable, Text, Text, Text, Text, Text> mapReduceDriver; @Before
public void setUp() { //测试mapreduce
NatureFeatureMappper mapper = new NatureFeatureMappper();
NatureReducer reducer = new NatureReducer();
//添加要测试的map类
mapDriver = MapDriver.newMapDriver(mapper);
//添加要测试的reduce类
reduceDriver = ReduceDriver.newReduceDriver(reducer);
//添加map类和reduce类
mapReduceDriver = MapReduceDriver.newMapReduceDriver(mapper, reducer); //测试配置参数
conf.setInt(Settings.TestDataSize.getName(), 1);
conf.setInt(Settings.TrainDataSize.getName(), 6);
//driver之间是独立的,谁用到谁就设置conf
reduceDriver.setConfiguration(conf);
mapReduceDriver.setConfiguration(conf);
} @Test
public void testMapper() throws IOException {
mapDriver.withInput(new LongWritable(), new Text("map的输入"));
mapDriver.withOutput(new Text("期望的key"), new Text("期望的value")); //打印实际结果
List<Pair<Text , Text>> result = mapDriver.run();
for(Pair<Text , Text> kv : result){
System.out.println("mapper : " + kv.getFirst());
System.out.println("mapper : " + kv.getSecond());
}
//进行case测试,对比输入输出结果
mapDriver.runTest();
} @Test
public void testReducer() throws IOException {
List<Text> values = new ArrayList<Text>();
values.add(new Text("输入"));
reduceDriver.withInput(new Text("输入"), values);
reduceDriver.withOutput(new Text("期望的输出"), new Text("期望的输出"));
reduceDriver.runTest();
} @Test
public void testMapperReducer() throws IOException {
mapReduceDriver.withInput(new LongWritable(), new Text("输入"));
mapReduceDriver.withOutput(new Text("期望的输出"), new Text("期望的输出"));
//打印实际结果
List<Pair<Text, Text>> list = mapReduceDriver.run();
System.out.println("mapreducedriver size:" + list.size());
for(Pair<Text , Text> lst : list){
System.out.println(lst.getFirst());
System.out.println(lst.getSecond());
}
//进行case测试,对比输入输出结果
mapReduceDriver.runTest();
} @Test
public void testMapperCount() throws IOException {
mapDriver.withInput(new LongWritable(), new Text("输入"));
mapDriver.withOutput(new Text("期望的输出"), new Text("期望的输出"));
mapDriver.runTest();
//判断 map中的counter值是否与期望的相同
assertEquals("Expected 1 counter increment", 1, mapDriver.getCounters().findCounter("data", "suc").getValue());
}
}

MapReduce Unit Test的更多相关文章

  1. MapReduce和Spark写入Hbase多表总结

    作者:Syn良子 出处:http://www.cnblogs.com/cssdongl 转载请注明出处 大家都知道用mapreduce或者spark写入已知的hbase中的表时,直接在mapreduc ...

  2. mapReduce编程之Recommender System

    1 协同过滤算法 协同过滤算法是现在推荐系统的一种常用算法.分为user-CF和item-CF. 本文的电影推荐系统使用的是item-CF,主要是由于用户数远远大于电影数,构建矩阵的代价更小:另外,电 ...

  3. Hadoop官方文档翻译——MapReduce Tutorial

    MapReduce Tutorial(个人指导) Purpose(目的) Prerequisites(必备条件) Overview(综述) Inputs and Outputs(输入输出) MapRe ...

  4. Hadoop 学习笔记3 Develping MapReduce

    小笔记: Mavon是一种项目管理工具,通过xml配置来设置项目信息. Mavon POM(project of model). Steps: 1. set up and configure the ...

  5. mapReduce编程之google pageRank

    1 pagerank算法介绍 1.1 pagerank的假设 数量假设:每个网页都会给它的链接网页投票,假设这个网页有n个链接,则该网页给每个链接平分投1/n票. 质量假设:一个网页的pagerank ...

  6. hadoop权威指南 chapter2 MapReduce

    MapReduce MapReduce is a programming model for data processing. The model is simple, yet not too sim ...

  7. Hadoop权威指南:MapReduce应用开发

    Hadoop权威指南:MapReduce应用开发 [TOC] 一般流程 编写map函数和reduce函数 编写驱动程序运行作业 用于配置的API Hadoop中的组件是通过Hadoop自己的配置API ...

  8. Hadoop Mapreduce 参数 (二)

    MergeManagerImpl 类 内存参数计算 maxInMemCopyUse 位于构造函数中 final float maxInMemCopyUse = jobConf.getFloat(MRJ ...

  9. MapReduce C++ Library

    MapReduce C++ Library for single-machine, multicore applications Distributed and scalable computing ...

随机推荐

  1. Css三栏布局自适应实现几种方法

    Css三栏布局自适应实现几种方法 自适应实现方法我们可以从三个方法来做,一个是绝对定位 ,自身浮动法 和margin负值法了,下面我们一起来看看这三个例子吧,希望例子能帮助到各位同学. 绝对定位法三栏 ...

  2. jQuery 中get 和post 方法传值注意事项

    用 jQuery 的都知道,jQuery 的 get 和 post 方法有三个参数:地址,数据 和回调函数,但我们知道地址也可以跟随数据的(形如:get_data.php?v1=1&v2=2) ...

  3. 【转】【iOS测试系列】常用测试小插件的使用

    背景介绍 由于iOS系统的限制,在非越狱的自动化测试中无法实现一些常用的功能,比如不同应用之间来回切换.模拟全局的点击事件等等.但是在越狱的环境下,这些限制就不存在了,我们可以利用各种小插件来实现我们 ...

  4. 在MFC中改变控件的TAB顺序

    在MFC界面中,控件的TAB顺序如果乱了,不合理,可能会使界面出现意料之外的显示. 例如,在用Spin Control来对Edit Control内的值进行增减时,如果Edit Control.Spi ...

  5. STL容器:list双向链表学习

    list是一个双向列表容器,完成了标准C++数据结构中链表的所有功能; list与vector和deque类似,只不过其中的对象提供了对元素的随机访问. STL以双向链表的方式实现list,访问需要从 ...

  6. JavaScript的parseint()函数

    定义和用法 parseInt() 函数可解析一个字符串,并返回一个整数. 语法 parseInt(string, radix) 参数 描述 string 必选项.要转换为数字的字符串. radix 可 ...

  7. mac 10.9 dock在多屏幕间移动

    想要在哪个屏幕使用dock,就在这个屏幕把鼠标移动到最底部即可.神奇吧?太意外了...居然被我发现了...

  8. 有Thread1、Thread2、Thread3、Thread4四条线程分别统计C、D、E、F四个盘的大小,所有线程都统计完毕交给Thread5线程去做汇总,应当如何实现?

    利用java.util.concurrent包下的CountDownLatch(减数器)或CyclicBarrier(循环栅栏) 转自:http://www.cnblogs.com/westward/ ...

  9. 74、在ListView最后一项添加一个静态Item数据

    <?xml version="1.0" encoding="UTF-8"?> <LinearLayout xmlns:android=&quo ...

  10. golang中context包学习

    摘要 go语言中goroutine之间的关联关系,缺乏维护,在erlang中有专门的机制来保障新开仟程的生命周期, 在go语言中,只能通过channel + select来实现,但不够直观,感觉很绕. ...