传送门

题意:竟然扯到哈利波特了....

和上一题差不多,但颜色数很少,给出不能相邻的颜色对


可以相邻的连边建图矩阵乘法求回路个数就得到$f(i)$了....

感觉这样的环上有限制问题挺套路的...旋转的等价循环个数$t$我们很清楚了,并且环上每$t$个元素各属于不同的循环,我们只要求出$t$个元素满足限制的方案数就能得到$C(f)$了

然后再加上$gcd$取值讨论就降到根号了

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int N=1e5+,P=;
typedef long long ll;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
}
int n,m,k,u,v;
int p[N];
bool notp[N];
void sieve(int n){
for(int i=;i<=n;i++){
if(!notp[i]) p[++p[]]=i;
for(int j=;j<=p[]&&i*p[j]<=n;j++){
notp[i*p[j]]=;
if(i%p[j]==) break;
}
}
}
inline int phi(int n){
int re=n,m=sqrt(n);
for(int i=;i<=p[]&&p[i]<=m&&p[i]<=n;i++) if(n%p[i]==){
re=re/p[i]*(p[i]-);
while(n%p[i]==) n/=p[i];
}
if(n>) re=re/n*(n-);
return re%P;
}
struct Matrix{
int a[][];
int* operator [](int x){return a[x];}
Matrix(){memset(a,,sizeof(a));}
void ini(){for(int i=;i<=;i++) a[i][i]=;}
}a;
Matrix operator *(Matrix a,Matrix b){
Matrix c;
for(int k=;k<=m;k++)
for(int i=;i<=m;i++) if(a[i][k])
for(int j=;j<=m;j++) if(b[k][j])
(c[i][j]+=a[i][k]*b[k][j])%=P;
return c;
}
Matrix operator ^(Matrix a,int b){
Matrix re;re.ini();
for(;b;b>>=,a=a*a)
if(b&) re=re*a;
return re;
}
inline void mod(int &x){if(x>=P) x-=P;}
int f(int x){
Matrix b=a^x;
int re=;
for(int i=;i<=m;i++) mod(re+=b[i][i]);
return re;
}
inline int Pow(int a,int b){
int re=;
a%=P;
for(;b;b>>=,a=a*a%P)
if(b&) re=re*a%P;
return re;
}
inline int Inv(int a){return Pow(a,P-);}
void solve(){
int m=sqrt(n),ans=;
for(int i=;i<=m;i++) if(n%i==){
mod(ans+= f(i)*phi(n/i)%P);
if(i*i!=n) mod(ans+= f(n/i)*phi(i)%P);
}
printf("%d\n",ans*Inv(n)%P);
}
int main(){
freopen("in","r",stdin);
sieve();
int T=read();
while(T--){
n=read();m=read();k=read();
for(int i=;i<=m;i++) for(int j=;j<=m;j++) a[i][j]=;
for(int i=;i<=k;i++){
u=read();v=read();
a[u][v]=a[v][u]=;
}
solve();
}
}

POJ 2888 Magic Bracelet [Polya 矩阵乘法]的更多相关文章

  1. poj 2888 Magic Bracelet(Polya+矩阵快速幂)

    Magic Bracelet Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 4990   Accepted: 1610 D ...

  2. [POJ 2888]Magic Bracelet[Polya Burnside 置换 矩阵]

    也许更好的阅读体验 \(\mathcal{Description}\) 大意:给一条长度为\(n\)的项链,有\(m\)种颜色,另有\(k\)条限制,每条限制为不允许\(x,y\)颜色连在一起.要求有 ...

  3. poj 2888 Magic Bracelet <polya定理>

    题目:http://poj.org/problem?id=2888 题意:给定n(n <= 10^9)颗珠子,组成一串项链,每颗珠子可以用m种颜色中一种来涂色,如果两种涂色方法通过旋转项链可以得 ...

  4. POJ 2888 Magic Bracelet(Burnside引理,矩阵优化)

    Magic Bracelet Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 3731   Accepted: 1227 D ...

  5. POJ 2888 Magic Bracelet(burnside引理+矩阵)

    题意:一个长度为n的项链,m种颜色染色每个珠子.一些限制给出有些颜色珠子不能相邻.旋转后相同视为相同.有多少种不同的项链? 思路:这题有点综合,首先,我们对于每个n的因数i,都考虑这个因数i下的不变置 ...

  6. poj 2888 Magic Bracelet

    经典的有限制条件的Burnside计数+矩阵乘法!!! 对于这种限制条件的情况我们可以通过矩阵连乘得到,先初始化矩阵array[i][j]为1.如果颜色a和颜色b不能涂在相邻的珠子, 那么array[ ...

  7. POJ 2888 Magic Bracelet ——Burnside引理

    [题目分析] 同样是Burnside引理.但是有几种颜色是不能放在一起的. 所以DP就好了. 然后T掉 所以矩阵乘法就好了. 然后T掉 所以取模取的少一些,矩阵乘法里的取模尤其要注意,就可以了. A掉 ...

  8. 解题:POJ 2888 Magic Bracelet

    题面 这题虽然很老了但是挺好的 仍然套Burnside引理(因为有限制你并不能套Polya定理),思路和这个题一样,问题主要是如何求方案. 思路是把放珠子的方案看成一张图,然后就巧妙的变成了一个经典的 ...

  9. HDU 2865 Birthday Toy [Polya 矩阵乘法]

    传送门 题意: 相邻珠子不能相同,旋转等价.$n$个珠子$k$中颜色,求方案数 首先中间珠子$k$种选择,$k--$如果没有相邻不同的限制,就和$POJ\ 2154$一样了$|C(f)|=k^{\#( ...

随机推荐

  1. 哈密顿绕行世界问题(dfs+记录路径)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2181 哈密顿绕行世界问题 Time Limit: 3000/1000 MS (Java/Others) ...

  2. Zabbix安装客户端agent(windows和Centos7)

    上一篇简单的介绍了怎么搭建Zabbix监控服务端,接下来给大家介绍怎么在windows和Centos7上安装zabbix_agent客户端. Zabbix是一个基于WEB界面的提供分布式系统监视以及网 ...

  3. 移动App,AJAX异步请求,实现简单的增、删、改、查

    用ajax发异步请求时,要注意url."AppServer"为后台项目名,"LoginServlet.action"为web.xml中的<url-patt ...

  4. JPQL

    JPQL语言 JPQL语言,即 Java Persistence Query Language 的简称. JPQL是一种和 SQL 非常类似的中间性和对象化查询语言, 它最终会被编译成针对不同底层数据 ...

  5. [国嵌攻略][171][V4L2图像编程接口深度学习]

    V4L2摄像编程模型 1.打开摄像头设备文件 2.获取驱动信息-VIDIOC_QUERYCAP 3.设置图像格式-VIDIOC_S_FMT 4.申请帧缓冲-VIDIOC_REQBUFS 5.获取帧缓冲 ...

  6. 十二个 ASP.NET Core 例子——中间件

    目录: 什么是中间件(IApplicationBuilder) 创建 顺序规则 Asp.Net Core 内置的中间件 1.什么是中间件 官方:中间件是组装成应用程序管道以处理请求和响应的软件.每个组 ...

  7. tp5 $_ENV获取不到数据

    $_ENV变量是取决于服务器的环境变量的,从不同的服务器上获取的$_ENV变量打印出的结果可能是不同的. php的配置文件php.ini的配置项为:variables_order = "GP ...

  8. 怎样实现给DEDE的栏目增加栏目图片(2)

    2.3 打开dede/templets/catalog_edit.htm页面,查找 栏目名称:

  9. 将自己的代码托管到github上

    这几天一直在做一个爬虫的小demo,代码基本写的差不多了,想着如何把他放在一个地方,如是乎注册了一个github账号,开始了自己的git之旅. 首先是下载git,这个我就不多说啦!到处都有推荐看看廖雪 ...

  10. CCNA -OSI七层模型

    OSI (开放系统互联(Open System Interconnection)) OSI是Open System Interconnection的缩写,意为开放式系统互联.国际标准化组织(ISO)制 ...