翻译:
卡卡屋前有一株苹果树,每年秋天,树上长了许多苹果。卡卡很喜欢苹果。树上有N个节点,卡卡给他们编号1到N,根的编号永远是1.每个节点上最多结一个苹果。卡卡想要了解某一个子树上一共结了多少苹果。
现在的问题是不断会有新的苹果长出来,卡卡也随时可能摘掉一个苹果吃掉。你能帮助卡卡吗?
Input
输入数据:第一行包含一个整数N(N<=100000),表示树上节点的数目。
接下来N-1行,每行包含2个整数u和v,表示u和v是连在一起的。
下一行包含一个整数M(M ≤ 100,000).
接下来M行包含下列两种命令之一:
“C x” 表示某个节点上的苹果发生了变化,如果原来没有苹果,则现在长出了一个苹果;如果原来有苹果,则是卡卡把它吃了。
“Q x” 表示查询x节点上的子树上的苹果有多少。包含节点x.
Output
对于每次查询,输出其结果。
Sample Input

3
1 2
1 3
3
Q 1
C 2
Q 1

Sample Output

3
2

解题思路


因为M非常之大,我们可以猜出时间复杂度大概为O(mlog n),又需要维护,可以想到线段树或者树状数组之类的算法。
本人比较懒,所以我不想写长长的线段树(而且代码写得丑)。 我讲一讲我用树状数组的方法:
为了建立树状数组,要保证每个节点的子树的序号在前,我们可以想到对树进行后序遍历,用数组存储顺序(后面的序号参考这里)。
这样,对于Q的操作就直接可以套模板了。
如节点2的序号为6,它子树中最小的序号为2,则统计个数就是在[2, 6]区间内求和。
后序遍历,记录顺序和记录子树中最小序号可以通过DFS O(n)实现。


代码如下:

# include <stdio.h>
# include <string.h>
# include <iostream>
# define N 100001
# define mem(a, b) memset(a, b, sizeof(a));
# define ll long long
# define oo 2147483647
# ifdef win32
# define LL "%I64d"
# else
# define LL "%lld"
# endif
using namespace std; int n, a[N], b[N], p[N], m, l[N];
int ft[N * 2], to[N * 2], nt[N * 2], cnt, boo[N]; inline void Add_edge(int u, int v){ //构图
to[cnt] = v; nt[cnt] = ft[u]; ft[u] = cnt++;
} inline int lowbit(int x){
return x & (-x);
} inline void Add(int k, int v){//更新模板
while(k <= n) a[k] += v, k += lowbit(k);
} inline void Dfs(int u){
boo[u] = 1;
for(int v = ft[u]; v != -1; v = nt[v])
if(!boo[to[v]]){
Dfs(to[v]);
l[u] = min(l[u], l[to[v]]);//记录最小序号
}
p[u] = ++cnt; //记录序号
Add(cnt, 1); //建立树状数组
if(l[u] == l[0]) l[u] = p[u];//如果没有孩子就是自己
} inline int Sum(int k){//求和模板
int s = 0;
while(k){
s += a[k];
k -= lowbit(k);
}
return s;
} int main(){
scanf("%d", &n);
mem(ft, -1); mem(l, 63);
for(int i = 1; i < n; i++){
int u, v;
scanf("%d%d", &u, &v);
b[u] = b[v] = 1; //标记已有苹果
Add_edge(u, v); Add_edge(v, u);
}
cnt = 0; Dfs(1);
scanf("%d", &m);
while(m--){
char c; int i;
scanf(" %c%d", &c, &i);
if(c == 'C'){
b[i] = -b[i]; //修改标记
Add(p[i], b[i]); //更新
}
else printf("%d\n", Sum(p[i]) - Sum(l[i] - 1)); //区间求和
}
return 0;
}

本人小蒟蒻一个,第一次写博客,大佬们见笑了。。。

Poj3321 Apple tree的更多相关文章

  1. POJ3321 Apple Tree (JAVA)

    树形数组题,有一定难度. 首先得搞清楚树形数组是什么 - 它是建立在原始数组上的统计数组 - 目的:方便对原始数组进行切片统计,主要用于统计切片的累加和 其实你可以对切片进行扫描,把元素一个一个加起来 ...

  2. [poj3321]Apple Tree(dfs序+树状数组)

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 26762   Accepted: 7947 Descr ...

  3. POJ3321 Apple Tree (树状数组)

    Apple Tree Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 16180   Accepted: 4836 Descr ...

  4. POJ3321/Apple tree/(DFS序+线段树)

    题目链接 Apple Tree Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9692 Accepted: 3217 Descr ...

  5. POJ--3321 Apple Tree(树状数组+dfs(序列))

    Apple Tree Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 22613 Accepted: 6875 Descripti ...

  6. ACM学习历程——POJ3321 Apple Tree(搜索,线段树)

          Description There is an apple tree outside of kaka's house. Every autumn, a lot of apples will ...

  7. POJ3321 - Apple Tree DFS序 + 线段树或树状数组

    Apple Tree:http://poj.org/problem?id=3321 题意: 告诉你一棵树,每棵树开始每个点上都有一个苹果,有两种操作,一种是计算以x为根的树上有几个苹果,一种是转换x这 ...

  8. POJ3321 Apple Tree(DFS序)

    题目,是对一颗树,单点修改.子树查询.典型的dfs序入门题. DFS序可以将一颗树与子树们表示为一个连续的区间,然后用线段树来维护:感觉算是树链剖分的一种吧,和轻重链剖分不同的是这是对子树进行剖分的. ...

  9. POJ3321 Apple Tree(树状数组)

    先做一次dfs求得每个节点为根的子树在树状数组中编号的起始值和结束值,再树状数组做区间查询 与单点更新. #include<cstdio> #include<iostream> ...

随机推荐

  1. [Python Study Notes] python面试题总结

    python语法以及其他基础部分 可变与不可变类型: 浅拷贝与深拷贝的实现方式.区别:deepcopy如果你来设计,如何实现: __new__() 与 __init__()的区别: 你知道几种设计模式 ...

  2. centos 7 双网卡建网桥脚本实现

    #!/bin/bash interface1=`ls /sys/class/net|grep en|awk 'NR==1{print}'` interface2=`ls /sys/class/net| ...

  3. Oracle,Sql,procedure 感觉自己写的很棒的一个存储过程

    感觉自己写的很棒的一个Oracle存储过程,(其实想说很叼^,^). 集成了一堆操作数据的功能(至少几十), 包括存储过程执行异常信息输出帮助诊断. 亮点很多, 比如`over(partition b ...

  4. .NET常用第三方库(包)总结

    文章会不定期更新,以下内容均为个人总结,欢迎各位拍砖指正 序列化与反序列化 JSON.NET应该是.NET平台上使用最为广泛的序列化/反序列化包了,ASP.NET和ASP.NET Core中默认序列化 ...

  5. 【JavaWeb】DbUtils入门之QueryRunner

    DbUtils简介 根据官网的介绍,DbUtils是一种 JDBC Utility Component (翻译过来大概就是:JDBC实用部件),故名思意,和数据库操作有关 官网上的简介也称之为 JDB ...

  6. 《InsideUE4》UObject(六)类型系统代码生成重构-UE4CodeGen_Private

    读的不如写的快 引言 在之前的<InsideUE4>UObject(四)类型系统代码生成和<InsideUE4>UObject(五)类型系统收集章节里,我们介绍了UE4是如何根 ...

  7. 【学习笔记】Spring中的BeanFactory和ApplicationContext 以及 Bean的生命周期(Y2-3-2)

    BeanFactory和ApplicationContext Spring的IoC容器就是一个实现了BeanFactory接口的可实例化类. Spring提供了两种不同的容器: 一种是最基本的Bean ...

  8. 测试同学难道要写一辈子的hello world?

    最近我们在测试团队内推行自动化用例责任制,大致的意思是:我们安排培训资源,提供技术支持和一对一辅导,要求每一个自主选择了自动化和接口测试发展通道的同学必须让自己负责的项目自动化用例覆盖率有所提升. 后 ...

  9. 测试任务汇总v1.0

    2017.08.04 整理了目前我们所在团队需要做的日常任务 定义为v1.0

  10. Hibernate学习(一)创建数据表

    (1)生成数据库表的创建: // 默认读取hibernate.cfg.xml文件 Configuration cfg = new Configuration().configure(); // 生成并 ...