Java求最大公约数和最小公倍数
1. 最大公约数(Greatest Common Divisor(GCD))
1.1 基本概念
最大公因数,也称最大公约数、最大公因子,指两个或多个整数共有约数中最大的一个。a,b的最大公约数记为(a,b),同样的,a,b,c的最大公约数记为(a,b,c),多个整数的最大公约数也有同样的记号。求最大公约数有多种方法,常见的有质因数分解法、短除法、辗转相除法、更相减损法。与最大公约数相对应的概念是最小公倍数,a,b的最小公倍数记为[a,b]。
1.2 算法
辗转相除法
辗转相除法:辗转相除法是求两个自然数的最大公约数的一种方法,也叫欧几里德算法。
例如,求(319,377):
∵ 319÷377=0(余319)
∴(319,377)=(377,319);
∵ 377÷319=1(余58)
∴(377,319)=(319,58);
∵ 319÷58=5(余29)
∴ (319,58)=(58,29);
∵ 58÷29=2(余0)
∴ (58,29)= 29;
∴ (319,377)=29。
可以写成右边的格式。
用辗转相除法求几个数的最大公约数,可以先求出其中任意两个数的最大公约数,再求这个最大公约数与第三个数的最大公约数,依次求下去,直到最后一个数为止。最后所得的那个最大公约数,就是所有这些数的最大公约数。
2. 最小公倍数(Least Common Multiple(LCM))
2.1 基本概念
两个或多个整数公有的倍数叫做它们的公倍数,其中除0以外最小的一个公倍数就叫做这几个整数的最小公倍数。整数a,b的最小公倍数记为[a,b],同样的,a,b,c的最小公倍数记为[a,b,c],多个整数的最小公倍数也有同样的记号。
与最小公倍数相对应的概念是最大公约数,a,b的最大公约数记为(a,b)。关于最小公倍数与最大公约数,我们有这样的定理:(a,b)[a,b]=ab(a,b均为整数)
2.2 算法
公式法
由于两个数的乘积等于这两个数的最大公约数与最小公倍数的积。即(a,b)×[a,b]=a×b。所以,求两个数的最小公倍数,就可以先求出它们的最大公约数,然后用上述公式求出它们的最小公倍数。
Java语言实现求最大公约数(GCD)和最小公倍数(LCM)
- 程序一
package com.echo;
import java.util.Scanner;
public class GCDLCM {
// 最大公约数
public static int get_gcd(int n1, int n2) {
int gcd = 0;
if (n1 < n2) {// 交换n1、n2的值
n1 = n1 + n2;
n2 = n1 - n2;
n1 = n1 - n2;
}
if (n1 % n2 == 0) {
gcd = n2;
}
while (n1 % n2 > 0) {
n1 = n1 % n2;
if (n1 < n2) {
n1 = n1 + n2;
n2 = n1 - n2;
n1 = n1 - n2;
}
if (n1 % n2 == 0) {
gcd = n2;
}
}
return gcd;
}
// 最小公倍数
public static int get_lcm(int n1, int n2) {
return n1 * n2 / get_gcd(n1, n2);
}
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
System.out.print("请输入第一个整数:");
int n1 = input.nextInt();
System.out.print("请输入第二个整数:");
int n2 = input.nextInt();
System.out.println("(" + n1 + "," + n2 + ")" + "=" + get_gcd(n1, n2));
System.out.println("[" + n1 + "," + n2 + "]" + "=" + get_lcm(n1, n2));
}
}
- 程序二
package com.echo;
import java.util.Scanner;
public class GCDLCM {
// 最大公约数
public static int get_gcd(int a, int b) {
int max, min;
max = (a > b) ? a : b;
min = (a < b) ? a : b;
if (max % min != 0) {
return get_gcd(min, max % min);
} else
return min;
}
// 最小公倍数
public static int get_lcm(int a, int b) {
return a * b / get_gcd(a, b);
}
public static void main(String[] args) {
Scanner input = new Scanner(System.in);
int n1 = input.nextInt();
int n2 = input.nextInt();
System.out.println("(" + n1 + "," + n2 + ")" + "=" + get_gcd(n1, n2));
System.out.println("[" + n1 + "," + n2 + "]" + "=" + get_lcm(n1, n2));
}
}
Java求最大公约数和最小公倍数的更多相关文章
- JAVA 基础编程练习题6 【程序 6 求最大公约数及最小公倍数】
6 [程序 6 求最大公约数及最小公倍数] 题目:输入两个正整数 m 和 n,求其最大公约数和最小公倍数. 程序分析:利用辗除法. package cskaoyan; public class csk ...
- c语言求最大公约数和最小公倍数
求最大公约数和最小公倍数 假设有两个数a和b,求a,b的最大公约数和最小公倍数实际上是一个问题,得出这两个数的最大公约数就可以算出它们的最小公倍数. 最小公倍数的公式是 a*b/m m为最大公约数 因 ...
- java求最大公约数,和最小公倍数
import java.util.Scanner; public class Test { public static void main(String[] args) { Scanner sc = ...
- Java50道经典习题-程序6 求最大公约数及最小公倍数
题目:输入两个正整数m和n,求其最大公约数和最小公倍数.分析:用辗转相除法求最大公约数 两个数的最大公约数:设两个数分别为n和m,(n>=m);用定义一个变量i,使用for循环,将i的取值 ...
- Problem06 求最大公约数及最小公倍数
题目:输入两个正整数m和n,求其最大公约数(m,n)和最小公倍数[m,n]. 程序分析:利用辗转相除法. 利用辗除法:用较大数除以较小数,再用出现的余数(第一余数)去除除数, 再用出现的余数(第二余数 ...
- 辗转相除法求最大公约数和最小公倍数【gcd】
要求最小公倍数可先求出最大公约数 设要求两个数a,b的最大公约数 伪代码: int yushu,a,b: while(b不等于0) { yushu=a对b求余 b的值赋给a yushu的值赋给b } ...
- java求最大公约数(分解质因数)
下面是四种用java语言编程实现的求最大公约数的方法: package gcd; import java.util.ArrayList; import java.util.List; public c ...
- c语言求最大公约数和最小公倍数(转)
最大公约数与最小公倍数的求解是很多初学C的人所面临的一道问题.当然这道问题并不难解答,也有很多人已经写过相关的博客,我在此书写此篇博客,一是为了让自己能够夯实基础,另外就是希望能够帮到和我一样的初学者 ...
- 求最大公约数和最小公倍数_python
"""写两个函数,分别求两个整数的最大公约数和最小公倍数,调用这两个函数,并输出结果.两个整数由键盘输入.""" ''' 设两个整数u和v, ...
随机推荐
- 一步一步从原理跟我学邮件收取及发送 13.mime格式与常见字符编码
在前面的本系列文章中我们已经学会了邮件的发送和收取.但在收取中我们看到的是一串串的乱码,回忆前面的发送过程,我们会奇怪:我们前面的邮件是明文啊.为什么明文的邮件明明也可以正常工作,还要弄乱码似的字符串 ...
- 《InsideUE4》UObject(六)类型系统代码生成重构-UE4CodeGen_Private
读的不如写的快 引言 在之前的<InsideUE4>UObject(四)类型系统代码生成和<InsideUE4>UObject(五)类型系统收集章节里,我们介绍了UE4是如何根 ...
- JavaScript数据迭代方法差别
js有很多总接待方法,ES6之后又新增了几个: 这里主要讨论数组迭代遍历的方法所以不会细讲for...in... ES5.ES6数组迭代方法有: forEach map filter some eve ...
- wpf 如何让控件左右移动
通过DoubleAnimation可以让控件进行左右移动. <Canvas x:Name="canvas_Shape" HorizontalAlignment="S ...
- HDU - 1584 IDA*
思路:裸的IDA*,估计当前状态至少需要多少距离才能达到目标状态,剪枝即可.每一墩牌只需记录其最上面和最下面的牌型即可完成移动. AC代码 #include <cstdio> #inclu ...
- APP性能测试(启动时间)
#encoding:utf-8 import csv import os import time class App(object): def __init__(self): self.content ...
- php-fpm问题
这个问题怎么说呢?之前遇到这个问题内心是奔溃的.因为我压根不知道是哪里出问题啦.不过,在我努力探索下,最终还是解决了问题. so请记住,坚持不一定成功,但放弃一定失败. 简单描述一下问题: 1.本地的 ...
- redis分布式锁的几种实现方式,以及Redisson的配置和使用
最近在开发中涉及到了多个客户端的对redis的某个key同时进行增删的问题.这里就会涉及一个问题:锁 先举例在分布式系统中不加锁会出现问题: redis中存放了某个用户的账户余额 ,例如100 (用户 ...
- RISC_CPU
采用Top-Down设计方法,深入理解CPU的运作原理,本文参照夏宇闻老师的<Verilog 数字系统设计教程>,并做了相应的修改.仿真工具采用Mentor公司的ModelSim. 1.C ...
- 一句Python,一句R︱numpy、array——高级matrix
先学了R,最近刚刚上手python,所以想着将python和R结合起来互相对比来更好理解python.最好就是一句python,对应写一句R. python中的numpy模块相当于R中的matirx矩 ...