[算法&数据结构]深度优先搜索(Depth First Search)
深度优先 搜索(DFS, Depth First Search)
从一个顶点v出发,首先将v标记为已遍历的顶点,然后选择一个邻接于v的尚未遍历的顶点u,如果u不存在,本次搜素终止。如果u存在,那么从u又开始一次DFS。如此循环直到不存在这样的顶点。
算法核心代码如下:
void dfs(int step){
// 判断边界是否成立
// 尝试每一种可能
for(int i=0;i<n;i++){
//
// 继续执行下一步
dfs(step + 1)
// 取消已被使用标记
}
}
全排列
下面我们利用一个简单基本案例来学习全排列
A 手中有3张牌,分别是1,2,3 那么请问这三张牌能组成多少位不重复三位数字?
DFS算法分析
首先我们假设有三个桶,桶里面可以存放牌,那么我们来到第一个桶,我们手里有3张牌,按照顺序,我我们可以放入1,然后完成当前操作,标记第一张牌已经被使用,来到第二个桶里面,开始尝试,尝试放入第一张牌,此时1已经被使用了,所以我们尝试2,那么第二个桶也已经被放入数据了,2被标记为使用,接着来到第3个桶,此时,我们尝试放入1,1被使用,无法放入,尝试放入2,2也被使用,尝试放入3,OK,3 放入成功,此时三个桶放入完成,完成一次全排列,即
1,2,3
好,回到第3个桶,的时候我们没有其他牌可以放了,1,2已经被使用,3正在桶里呢,我们继续回到2号桶,同时标记3号牌未被使用,回到2号桶,此时2号桶已经尝试了1,2 那么我们继续尝试3号牌,3号牌刚刚被收回,可以放入,此时2号桶放入3号牌,继续第3个桶,同样的依次尝试所有的可能,1号牌不行,2号可以,此时完成了全排列
1,3,2
继续,回到3号桶,没有可用的了,回到2号桶,3号牌也被用了,也没有了,继续回到1号桶,此时1号桶放入的是1,那么我们收回,继续放入2号牌,来到2号桶,此时手中有1,3号,我们放入1,来到3号桶,1,2已被使用,我们只能放入3,又完成一次全排列
2,1,3
依次类推....
那么我们看下代码,这里提供了C语言版本的和Java语言版本的,原理是一样的
C语言版本
代码
#include <stdio.h>
// 定义扑克牌长度 3
#define PLAY_CARD_SIZE 3
// 定义数组
int numbers[] = {1,2,3};
// 标记数字是否被使用
int status[] = {0, 0, 0};
// 定义位置
int location[] = {0,0,0};
/**
* 声明dfs方法
* @param step 当然位置
*/
void dfs(int step);
int main(){
dfs(0);
return 0;
}
void dfs(int step){
// 判断搜索临界条件
if (step == 3){
for (int i = 0; i < 3; ++i) {
printf("%d,",location[i]);
}
printf("\n");
// 完成此次全排列
return;
}
for (int j = 0; j < 3; ++j) {
if(status[j] == 0){
location[step] = numbers[j];
status[j] = 1;
dfs(step + 1);
status[j] = 0;
}
}
}
输出结果
1,2,3,
1,3,2,
2,1,3,
2,3,1,
3,1,2,
3,2,1,
Java语言版本
代码
import java.util.ArrayList;
import java.util.List;
/**
* 深度优先搜寻算法
*/
public class DFS2 {
// 定义扑克牌的数量
static int PLAY_CARD_SIZE = 3;
// 存放扑克牌的集合
static List<PlayCard> playCards = new ArrayList<>();
// 存放扑克牌的位置
static String[] numbers = new String[PLAY_CARD_SIZE];
// 初始化扑克牌 1,2,3
static {
for (int i = 0; i < PLAY_CARD_SIZE; i++) {
playCards.add(new PlayCard(String.valueOf(i + 1), false));
}
}
// 程序入口
public static void main(String[] args) {
dfs(0);
}
private static void dfs(int startIndex) {
if (startIndex == playCards.size()){
for (int i = 0;i<numbers.length;i++){
System.out.print(numbers[i]+",");
}
System.out.println("");
System.out.println("-------------");
return;
}
for (int i = 0; i < playCards.size(); i++) {
if(!playCards.get(i).used){
playCards.get(i).used = true;
numbers[startIndex] = playCards.get(i).code;
dfs(startIndex + 1);
playCards.get(i).used = false;
}
}
}
// 封装的实体类,为了方便定义为public
static class PlayCard {
public PlayCard(String code, boolean used) {
this.code = code;
this.used = used;
}
// 扑克牌编号 ,即1,2,3
public String code;
// 扑克牌是否已被使用
public boolean used;
}
}
输出结果
1,2,3,
1,3,2,
2,1,3,
2,3,1,
3,1,2,
3,2,1,
等式求解
想起来以前有个题目,计算恒等式,题目是a[0] * 100 + a[1] * 10 + a[2] +a[3] * 100 + a[4] * 10 + a[5] == a[6] * 100 + a[7] * 10 +a[8]
问a的组合有多少种?
Ps:a是0-9组成的,不可重复
下面我们有DFS来实现这个题目,记得在以前,肯定是写九个for循环嵌套,现在我们尝试利用上面的全排列来判断,此时的输出(边界条件)修改为上面的等式,代码不做过多的阐述了。没有了9层循环的样子。。。。
代码
public class DFS3 {
static int PLAY_CARD_SIZE = 9;
static List<Number> playCards = new ArrayList<>();
static int[] a = new int[PLAY_CARD_SIZE];
static {
for (int i = 1; i <= PLAY_CARD_SIZE; i++) {
playCards.add(new Number(i, false));
}
}
public static void main(String[] args) {
dfs(0);
}
private static void dfs(int startIndex) {
if (startIndex == playCards.size()) {
if (checkNumber()) {
for (int i=0;i<PLAY_CARD_SIZE;i++){
System.out.print(a[i]+",");
}
System.out.println();
}
return;
}
for (int i = 0; i < playCards.size(); i++) {
if (!playCards.get(i).used) {
playCards.get(i).used = true;
a[startIndex] = playCards.get(i).code;
dfs(startIndex + 1);
playCards.get(i).used = false;
}
}
}
/**
* 判断搜索边界
*
* @return
*/
private static boolean checkNumber() {
if(a[0] * 100 + a[1] * 10 + a[2] +a[3] * 100 + a[4] * 10 + a[5] == a[6] * 100 + a[7] * 10 +a[8])
return true;
return false;
}
static class Number {
public Number(int code, boolean used) {
this.code = code;
this.used = used;
}
public int code;
public boolean used;
}
}
输出结构
输出结构也是蛮多的,这里摘录几个,可以自己测试下
1,2,4,6,5,9,7,8,3,
...
2,1,4,5,6,9,7,8,3,
...
3,1,4,6,5,8,9,7,2,
...
4,1,5,2,7,8,6,9,3,
...
5,9,6,2,4,1,8,3,7,
...
6,9,5,1,4,2,8,3,7,
...
7,8,4,1,5,2,9,3,6,
总结
DFS 是一个非常有意思的算法,在图解中和BFS也属于非常重要的算法了,多多理解,多多学习
[算法&数据结构]深度优先搜索(Depth First Search)的更多相关文章
- [算法入门]——深度优先搜索(DFS)
深度优先搜索(DFS) 深度优先搜索叫DFS(Depth First Search).OK,那么什么是深度优先搜索呢?_? 样例: 举个例子,你在一个方格网络中,可以简单理解为我们的地图,要从A点到B ...
- 回溯算法 DFS深度优先搜索 (递归与非递归实现)
回溯法是一种选优搜索法(试探法),被称为通用的解题方法,这种方法适用于解一些组合数相当大的问题.通过剪枝(约束+限界)可以大幅减少解决问题的计算量(搜索量). 基本思想 将n元问题P的状态空间E表示成 ...
- 算法总结—深度优先搜索DFS
深度优先搜索(DFS) 往往利用递归函数实现(隐式地使用栈). 深度优先从最开始的状态出发,遍历所有可以到达的状态.由此可以对所有的状态进行操作,或列举出所有的状态. 1.poj2386 Lake C ...
- javascript实现的图数据结构的广度优先 搜索(Breadth-First Search,BFS)和深度优先搜索(Depth-First Search,DFS)
最后一例,搞得快.三天之内走了一次.. 下一步,面象对像的javascript编程. function Dictionary(){ var items = {}; this.has = functio ...
- 【算法】深度优先搜索(dfs)
突然发现机房里有很多人不会暴搜(dfs),所以写一篇他们能听得懂的博客(大概?) PS:万能 yuechi ---- 大法师怎么能不会呢?! 若有错误,请 dalao 指出. 前置 我知道即使很多人都 ...
- [算法专题] 深度优先搜索&回溯剪枝
1. Palindrome Partitioning https://leetcode.com/problems/palindrome-partitioning/ Given a string s, ...
- 【算法】深度优先搜索(DFS)III
1. DFS生成排列 众所周知,1,2…n的排列一共有n!个,因此生成全排列至少需要n!的时间复杂度.如果用循环来生成排列,当n稍大时,内外循环会非常之多.可以用DFS模拟解决,生成0 … n-1的排 ...
- 算法与数据结构基础 - 深度优先搜索(DFS)
DFS基础 深度优先搜索(Depth First Search)是一种搜索思路,相比广度优先搜索(BFS),DFS对每一个分枝路径深入到不能再深入为止,其应用于树/图的遍历.嵌套关系处理.回溯等,可以 ...
- 常用算法2 - 广度优先搜索 & 深度优先搜索 (python实现)
1. 图 定义:图(Graph)是由顶点的有穷非空集合和顶点之间边的集合组成,通常表示为:G(V,E),其中,G表示一个图,V是图G中顶点的集合,E是图G中边的集合. 简单点的说:图由节点和边组成.一 ...
随机推荐
- sympy科学计算器
SymPy库常用函数 简介 本文抄于https://www.cnblogs.com/baby123/p/6296629.html SymPy是一个符号计算的Python库.它的目标是成为一个全功能的计 ...
- cocos creator主程入门教程(四)—— 网络通信
五邑隐侠,本名关健昌,10年游戏生涯,现隐居五邑.本系列文章以TypeScript为介绍语言. 前面已经介绍怎样加载资源.管理弹窗.开发一个网络游戏,难免要处理网络通信.有几点问题需要注意: 1.服务 ...
- visual studio code .net 开发
Visual Studio确实是相当好用,各种简化操作什么的简直不要太舒服.但其容量太大,有时不是很方便,所以今天简单介绍一下另一个工具--Visual Studio Code. 虽然相比于老大哥Vi ...
- cmd 配置dchp服务器
1.安装DHCP服务器角色,这样在netsh下才会有dhcp上下文 2.编写配置dhcp的脚本 从命令行运行netsh有两种语法: 比如要获取已经配置的网络接口列表 1.写全 netsh -r Rem ...
- JournalNode failed to restart
Install clusterEnable Namenode HAStart RU"Zookeeper" is completed"Core Masters" ...
- AI应用开发实战 - 从零开始配置环境
AI应用开发实战 - 从零开始配置环境 与本篇配套的视频教程请访问:https://www.bilibili.com/video/av24421492/ 建议和反馈,请发送到 https://gith ...
- Java体系学习书籍推荐
以下所有资料均可在:Java知识分享网下载. 大家有推荐的书可以在下方留言! 开源代码GitHub仓库总结 计算机基础 计算机科学导论 --(如果不是计算机科班的,应先看看计算机基础,了解一些基本概 ...
- Java核心技术第五章——1.类、超类、子类(1)
1.定义子类: 关键字extends表明正在构造的新类派生与一个已存在的类.已存在的类称为超类.基类或父类:新类称为子类.派生类或孩子类.超类和子类是Java程序员最常用的两个术语(emmm~~我觉得 ...
- Linux 使用 free 命令查看内存使用情况
1.free 命令的选项 使用 free 命令查看服务器内存使用情况. free [-b|-k|-m|-g|-h] [-l] [-o] [-t] [-s delay] [-c count] [-V] ...
- 干货|一文读懂 Spring Data Jpa!
有很多读者留言希望松哥能好好聊聊 Spring Data Jpa!其实这个话题松哥以前零零散散的介绍过,在我的书里也有介绍过,但是在公众号中还没和大伙聊过,因此本文就和大家来仔细聊聊 Spring D ...