无法用复杂状态进行转移时改变计算方式;巧妙的整体考虑;压缩空间优化时间

传送门:$>here<$

题意

给出一个n*m矩阵,从每一行选一个数加起来,可以得到一个和。易知总共会有$n^n$个和,输出最小的k个。

数据范围:$n,m \leq 800,k \leq m$

Solution

问题的转化

序列合并问题是这道题的弱化版——也就是在这道题目里规定n=2。这样的问题做法是先分别排序,然后默认a[1]与b[1..n]相加得到的n个和为最小,然后分别用其他的和去更新。由于单调性,a[i]一旦不能满足就立即跳出,可以证明复杂度接近$O(nlog^2n)$

这道题变成了n行,而我们可以将其转化为两行的问题——将前n-1行看做一个子问题。由于保证了k<=m,因此每做完一次就将若干行合并为一行,反复迭代即可。

启示

问题的转化

利用所要求的条件转化问题。尤其是这种非常类似的。

my code

第一行要特判

/*By DennyQi 2019*/
#include <cstdio>
#include <queue>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
;
const int INF = 0x3f3f3f3f;
inline int Max(const int a, const int b){ return (a > b) ? a : b; }
inline int Min(const int a, const int b){ return (a < b) ? a : b; }
inline int read(){
    ; ; register char c = getchar();
    '); c = getchar());
    , c = getchar();
    ) + (x<<) + c - '; return x * w;
}
int n,m,K;
int a[MAXN],b[MAXN],c[MAXN];
priority_queue <int, vector<int>, less<int> > H;
inline void Merge(){
    while(H.size()) H.pop();
    ; i <= m; ++i){
        H.push(a[] + b[i]);
    }
    ; i <= m; ++i){
        ; j <= m; ++j){
            if(a[i]+b[j] < H.top()){
                H.pop();
                H.push(a[i]+b[j]);
            }
            else{
                break;
            }
        }
    }
    ; --i){
        c[i] = H.top();
        H.pop();
    }
}
int main(){
    n = read(), m = read(), K = read();
    ; i <= n; ++i){
        ; j <= m; ++j){
            a[j] = read();
        }
        sort(a+,a+m+);
        ){
            ; j <= m; ++j){
                b[j] = a[j];
            }
            continue;
        }
        Merge();
        ; j <= m; ++j){
            b[j] = c[j];
        }
    }
    ; i <= K; ++i){
        printf("%d ",b[i]);
    }
    ;
}

[洛谷P1392] 取数的更多相关文章

  1. 洛谷 P1392 取数

    题面 在做这道题前,先要会他的弱化版(实际一模一样,只是愚蠢的洛谷评测级别差了一档(睿智如姬无夜)) ----------------------------------弱化版------------ ...

  2. 洛谷P1392 取数 [堆]

    题目传送门 取数 题目描述 在一个n行m列的数阵中,你须在每一行取一个数(共n个数),并将它们相加得到一个和.对于给定的数阵,请你输出和前k小的取数方法. 输入输出格式 输入格式: 第一行,三个数n, ...

  3. 洛谷P1288 取数游戏II(博弈)

    洛谷P1288 取数游戏II 先手必胜的条件需要满足如下中至少 \(1\) 条: 从初始位置向左走到第一个 \(0\) 的位置,经过边的数目为偶数(包含 \(0\) 这条边). 从初始位置向右走到第一 ...

  4. 洛谷P1288 取数游戏II[博弈论]

    题目描述 有一个取数的游戏.初始时,给出一个环,环上的每条边上都有一个非负整数.这些整数中至少有一个0.然后,将一枚硬币放在环上的一个节点上.两个玩家就是以这个放硬币的节点为起点开始这个游戏,两人轮流 ...

  5. 洛谷P1288 取数游戏II

    题目描述 有一个取数的游戏.初始时,给出一个环,环上的每条边上都有一个非负整数.这些整数中至少有一个0.然后,将一枚硬币放在环上的一个节点上.两个玩家就是以这个放硬币的节点为起点开始这个游戏,两人轮流 ...

  6. 洛谷 p1123 取数游戏【dfs】

    题目链接:https://www.luogu.org/problemnew/show/P1123 转载于:>>>>>> 题目描述 一个N×M的由非负整数构成的数字矩 ...

  7. 洛谷 P1123 取数游戏

    题目描述 一个N×M的由非负整数构成的数字矩阵,你需要在其中取出若干个数字,使得取出的任意两个数字不相邻(若一个数字在另外一个数字相邻8个格子中的一个即认为这两个数字相邻),求取出数字和最大是多少. ...

  8. 洛谷——P1123 取数游戏

    P1123 取数游戏 题目描述 一个N×M的由非负整数构成的数字矩阵,你需要在其中取出若干个数字,使得取出的任意两个数字不相邻(若一个数字在另外一个数字相邻8个格子中的一个即认为这两个数字相邻),求取 ...

  9. 洛谷P1288 取数游戏II 题解 博弈论

    题目链接:https://www.luogu.org/problem/P1288 首先,如果你的一边的边是 \(0\) ,那么你肯定走另一边. 那么你走另一边绝对不能让这条边有剩余,因为这条边有剩余的 ...

随机推荐

  1. Centos7+nginx+keepalived集群及双主架构案例

    目录简介 一.简介 二.部署nginx+keepalived 集群 三.部署nginx+keepalived双主架构 四.高可用之调用辅助脚本进行资源监控,并根据监控的结果状态实现动态调整 一.简介 ...

  2. Js-函数式编程

    前言 JavaScript是一门多范式语言,即可使用OOP(面向对象),也可以使用FP(函数式),由于笔者最近在学习React相关的技术栈,想进一步深入了解其思想,所以学习了一些FP相关的知识点,本文 ...

  3. 玩玩小程序:使用 WebApi 交互打造原生的微信小程序 - 图灵小书架

    使用 WebApi 交互打造原生的微信小程序 - 图灵小书架 目录 介绍 源码地址 扫一扫体验 代码分析 其它相关信息(互联网搜集) 介绍 定时抓取图灵社区官网的首页.最热.推荐和最新等栏目的相关图书 ...

  4. 使用visualStudio2017创建一个简单的控制台程序

    步骤: 1.  打开visual studio开发工具 2. 选择文件>新建>项目 如下图所示: 3. 选择window金典桌面>控制台应用程序 并填写好想项目名称和选择项目存储地址 ...

  5. Redis的值value(数据结构类型)

    Redis的数据结构类型,指的是redis的值的value类型: Redis的常用数据结构类型:string,list,set,sortedSet,hash 一.sting的类型 string类型是r ...

  6. kkkK的随笔

    自我介绍 学号:211606310 姓名:柯伟敏 爱好:篮球,足球 最爱的菜:4堂的饺子 最想说的话:一切都是最好的安排 初入大学 -------------------- 选择 选择软件工程这个专业 ...

  7. Redis入门教程(一)

    一.NoSQL概述 1.什么是NoSQL NoSQL,泛指非关系型的数据库.随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站,特别是超大规模和高并发的SNS类型的web2.0纯 ...

  8. JavaScript(四)变量

    变量的声明 在JavaScript程序中,使用一个变量之前应当使用关键字var进行声明,如下所示:var num;var sum; 也可以写成var num,sum,avg;如果只是声明变量而没有给变 ...

  9. UNIX DOMAIN SOCKET效率

    关于UNIX DOMAIN SOCKET和普通udp socket的对比 在TX1(4核A57 1.7GHz)的板卡上进行测试,每个包大小设置为1024,全速收发,UDS的速度在90Mbps左右,UD ...

  10. Win32 Ime

    Win32 Ime API: ImmGetContext: 获取指定窗口的当前的输入上下文,然后再尝试访问上下文中的信息.应用程序应该定期使用这个功能获取窗口的当前的输入上下文.若hWnd参数为零,将 ...