【UVa11426】GCD - Extreme (II)(莫比乌斯反演)
【UVa11426】GCD - Extreme (II)(莫比乌斯反演)
题面
题解
这。。
直接套路的莫比乌斯反演
我连式子都不想写了
默认推到这里把。。
然后把\(ans\)写一下
\]
令\(T=id\)
然后把\(T\)提出来
\]
后面那一堆东西直接线性筛
前面数论分块
单次询问复杂度\(O(\sqrt n)\)
最后别忘记题目求的是什么
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 4000000
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
bool zs[MAX+10];
int pri[MAX+10],tot;
long long s[MAX+10];
void pre()
{
zs[1]=true;s[1]=1;
for(int i=2;i<=MAX;++i)
{
if(!zs[i])pri[++tot]=i,s[i]=i-1;
for(int j=1;j<=tot&&i*pri[j]<=MAX;++j)
{
zs[i*pri[j]]=true;
if(i%pri[j])s[i*pri[j]]=s[i]*s[pri[j]];
else{s[i*pri[j]]=s[i]*pri[j];break;}
}
}
for(int i=1;i<=MAX;++i)s[i]+=s[i-1];
}
int main()
{
pre();
while(233)
{
int n=read();
if(!n)break;
int i=1,j;
long long ans=-1ll*n*(n+1)/2;
while(i<=n)
{
j=n/(n/i);
ans+=1ll*(n/i)*(n/i)*(s[j]-s[i-1]);
i=j+1;
}
printf("%lld\n",ans/2);
}
return 0;
}
【UVa11426】GCD - Extreme (II)(莫比乌斯反演)的更多相关文章
- UVA11426 GCD - Extreme (II) (欧拉函数/莫比乌斯反演)
UVA11426 GCD - Extreme (II) 题目描述 PDF 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 10 100 200000 0 输出样例#1: 67 13 ...
- UVA11426 GCD - Extreme (II) —— 欧拉函数
题目链接:https://vjudge.net/problem/UVA-11426 题意: 求 ∑ gcd(i,j),其中 1<=i<j<=n . 题解:1. 欧拉函数的定义:满足 ...
- uva11426 GCD Extreme(II)
题意:求sum(gcd(i,j),1<=i<j<=n)1<n<4000001 思路: 1.建立递推关系,s(n)=s(n-1)+gcd(1,n)+gcd(2,n)+……+ ...
- UVA11426 GCD - Extreme (II)---欧拉函数的运用
题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- [题解] UVA11426 GCD - Extreme (II)
题面 莫反是不可能莫反的,这辈子都不可能莫反了 题目要求的是 \[ \sum\limits_{i=1}^n \sum\limits_{j=i+1}^n \gcd(i,j) \] 稍微变个亚子 \[ \ ...
- 洛谷 - UVA11424 - GCD - Extreme (I) - 莫比乌斯反演 - 整除分块
https://www.luogu.org/problemnew/show/UVA11424 原本以为是一道四倍经验题来的. 因为输入的n很多导致像之前那样 \(O(n)\) 计算变得非常荒谬. 那么 ...
- UVA 11426 GCD - Extreme (II) (欧拉函数)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Problem JGCD Extreme (II)Input: Standard ...
- UVA 11426 - GCD - Extreme (II) (数论)
UVA 11426 - GCD - Extreme (II) 题目链接 题意:给定N.求∑i<=ni=1∑j<nj=1gcd(i,j)的值. 思路:lrj白书上的例题,设f(n) = gc ...
- 【CJOJ2512】gcd之和(莫比乌斯反演)
[CJOJ2512]gcd之和(莫比乌斯反演) 题面 给定\(n,m(n,m<=10^7)\) 求 \[\sum_{i=1}^n\sum_{j=1}^mgcd(i,j)\] 题解 首先把公因数直 ...
随机推荐
- 解决PhpStorm卡顿的问题
以前的开发一直使用phpstorm.可谓是情有独钟,但是发现随着开发phpStorm逐渐变得卡顿,也试过其他的编译器,但是都感觉没有PhpSrom好用,网上百度了一下,看到不一样的回答.只要修改两个J ...
- Java经典编程题50道之四十六
编程实现两个字符串的连接. public class Example46 { public static void main(String[] args) { addString( ...
- Linux下 开启防火墙端口
命令行输入: vi /etc/sysconfig/iptables 将 -A INPUT -m state --state NEW -m tcp -p tcp --dport 端口号 -j ACCEP ...
- windows 如何编译 Openssl ?
windows 如何编译 Openssl ? 编译环境 VS2015 Openssl 1.0.2 ActivePerl 5.24.3 x64 编译步骤 安装 ActivePerl 期间,勾选添加至环境 ...
- RotatedRect 类的用法
RotatedRect 以 Emgu.CV.Structure 为命名空间. 表示带有旋转角度的矩形. 结构说明 普通矩形的基本结构
- 情景linux--如何优雅地退出telnet
情景linux--在脚本中如何优雅地退出telnet 情景 telnet命令是TELNET协议的用户接口,它支持两种模式:命令模式和会话模式.虽然telnet支持许多命令,但大部分情况下,我们只是使用 ...
- session 与 coolie 的区别与联系
cookie 和session 的区别: session 在服务器端,cookie 在客户端(浏览器) cookie不是很安全,别人可以分析存放在本地的COOKIE并进行COOKIE欺骗考虑到安全应当 ...
- 远程控制你的智能电视,按键|输入|安装App等都已实现,已开源!
一.序 Hi,大家好,我是承香墨影! 智能电视或者智能盒子,不知道大家了解多少? 这两年各大厂商生产的电视设备,基本上都是搭载的 Android 系统.既然电视本身就是 Android 系统的,我们也 ...
- python 常见错误和异常 函数 正则表达式及多线程编程
生成随机密码#!/usr/bin/env python import stringfrom random import choice def gen_pass(num=9): all_chs = st ...
- BIOS简介
BIOS简介: BIOS是英文"Basic Input Output System"的缩略词,直译过来后中文名称就是"基本输入输出系统".其实,它是一组固化到计 ...