【UVa11426】GCD - Extreme (II)(莫比乌斯反演)
【UVa11426】GCD - Extreme (II)(莫比乌斯反演)
题面
题解
这。。
直接套路的莫比乌斯反演
我连式子都不想写了
默认推到这里把。。
然后把\(ans\)写一下
\]
令\(T=id\)
然后把\(T\)提出来
\]
后面那一堆东西直接线性筛
前面数论分块
单次询问复杂度\(O(\sqrt n)\)
最后别忘记题目求的是什么
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 4000000
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
bool zs[MAX+10];
int pri[MAX+10],tot;
long long s[MAX+10];
void pre()
{
zs[1]=true;s[1]=1;
for(int i=2;i<=MAX;++i)
{
if(!zs[i])pri[++tot]=i,s[i]=i-1;
for(int j=1;j<=tot&&i*pri[j]<=MAX;++j)
{
zs[i*pri[j]]=true;
if(i%pri[j])s[i*pri[j]]=s[i]*s[pri[j]];
else{s[i*pri[j]]=s[i]*pri[j];break;}
}
}
for(int i=1;i<=MAX;++i)s[i]+=s[i-1];
}
int main()
{
pre();
while(233)
{
int n=read();
if(!n)break;
int i=1,j;
long long ans=-1ll*n*(n+1)/2;
while(i<=n)
{
j=n/(n/i);
ans+=1ll*(n/i)*(n/i)*(s[j]-s[i-1]);
i=j+1;
}
printf("%lld\n",ans/2);
}
return 0;
}
【UVa11426】GCD - Extreme (II)(莫比乌斯反演)的更多相关文章
- UVA11426 GCD - Extreme (II) (欧拉函数/莫比乌斯反演)
UVA11426 GCD - Extreme (II) 题目描述 PDF 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 10 100 200000 0 输出样例#1: 67 13 ...
- UVA11426 GCD - Extreme (II) —— 欧拉函数
题目链接:https://vjudge.net/problem/UVA-11426 题意: 求 ∑ gcd(i,j),其中 1<=i<j<=n . 题解:1. 欧拉函数的定义:满足 ...
- uva11426 GCD Extreme(II)
题意:求sum(gcd(i,j),1<=i<j<=n)1<n<4000001 思路: 1.建立递推关系,s(n)=s(n-1)+gcd(1,n)+gcd(2,n)+……+ ...
- UVA11426 GCD - Extreme (II)---欧拉函数的运用
题目链接:http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- [题解] UVA11426 GCD - Extreme (II)
题面 莫反是不可能莫反的,这辈子都不可能莫反了 题目要求的是 \[ \sum\limits_{i=1}^n \sum\limits_{j=i+1}^n \gcd(i,j) \] 稍微变个亚子 \[ \ ...
- 洛谷 - UVA11424 - GCD - Extreme (I) - 莫比乌斯反演 - 整除分块
https://www.luogu.org/problemnew/show/UVA11424 原本以为是一道四倍经验题来的. 因为输入的n很多导致像之前那样 \(O(n)\) 计算变得非常荒谬. 那么 ...
- UVA 11426 GCD - Extreme (II) (欧拉函数)
转载请注明出处: http://www.cnblogs.com/fraud/ ——by fraud Problem JGCD Extreme (II)Input: Standard ...
- UVA 11426 - GCD - Extreme (II) (数论)
UVA 11426 - GCD - Extreme (II) 题目链接 题意:给定N.求∑i<=ni=1∑j<nj=1gcd(i,j)的值. 思路:lrj白书上的例题,设f(n) = gc ...
- 【CJOJ2512】gcd之和(莫比乌斯反演)
[CJOJ2512]gcd之和(莫比乌斯反演) 题面 给定\(n,m(n,m<=10^7)\) 求 \[\sum_{i=1}^n\sum_{j=1}^mgcd(i,j)\] 题解 首先把公因数直 ...
随机推荐
- Asp.net core Razor 页面
创建asp.net core 空项目->MyWeb 修改Startup.cs启动文件添加Razor页面支持: public void ConfigureServices(IServiceColl ...
- Leetcode刷题C#版之 Median of Two Sorted Arrays
题目: There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the ...
- 如何在Centos 7上用Logrotate管理日志文件
何为Logrotate? Logrotate是一个实用的日志管理工具,旨在简化对系统上生成大量的日志文件进行管理. Logrotate允许自动旋转压缩,删除和邮寄日志文件,从而节省宝贵的磁盘空间. L ...
- shell脚本实现anisble客户端脚本分发和密钥授权配置
##############################Deploy ansible client shell######################## echo "start d ...
- object类的equals方法简介 & String类重写equals方法
object类中equals方法源码如下所示 public boolean equals(Object obj) { return this == obj; } Object中的equals方法是直接 ...
- vue.js 与iview官网
vue.js https://cn.vuejs.org/v2/guide/instance.html#生命周期图示 iview https://www.iviewui.com/components/t ...
- BroadcastReceiver工作过程
动态注册过程: ContextWrapper.registerReceiver--> ContextImpl.registerReceiver--> ContextImpl.registe ...
- onclick与this
这个其实也是一个很基础的问题,不过又碰巧遇到了,所以记录一下. 假设我们有这么一个需求,按下按钮,弹出提示框,显示按钮的value值. 可能有一些人提起笔就写: <button onclick= ...
- D. Number of Parallelograms
D. Number of Parallelograms 原题链接 time limit per test 4 seconds memory limit per test 256 megabytes Y ...
- 对于JAVA程序优化的一些想法,读书有感.治疗强迫症良药
在深入了解Java虚拟机里读到:在try{}块里面执行代码,比if(x!=null)效率要高,前提是被catch的几率很低的情况下. 但是 在Effective Java里读到:因为异常机制的设计初衷 ...