题目链接:https://nanti.jisuanke.com/t/38228

题目大意:一个区间的值等于该区间的和乘以区间的最小值。给出一个含有n个数的序列(序列的值有正有负),找到该序列的区间最大值。

样例输入:

5

1 2 3 4 5

样例输出:

36

解题思路:如果序列的值全部为正值的话,可以说很简单,用一个单调栈加前缀和就可以了直接a。但是区间中存在负值,这个问题就变得复杂多了。

首先我们可以用两次单调栈,在O(n)的时间内,对于每个a[i]找到一个最大区间[ l[i] , r[i] ],使得a[i]在这个区间内为最小值。

然后我们便可以枚举每一个a[i],如果a[i]大于0,我们要在区间[ l[i] , r[i] ]内找到一个子区间使得这个区间的和最大,因为这个区间的和越大就可以使得区间的值越大,因为a[i]是区间[ l[i] , r[i] ]的最小值,所以该区间所有值均为正,则子区间的最大和即为[ l[i] , r[i] ]全部数的和,用前缀和便可以求出来了。

但是如果a[i]<0的话,我们就要在[ l[i] , r[i] ]内找到一个子区间使得这个子区间的和最小,这样才能使得区间值最大,我们可以建立两颗线段树,分别维护前缀和的最大值和前缀和的最小值,再在区间[ l[i]-1 , i-1 ]用最大值线段树查找到一个点使得这个点的前缀和最大设最大前缀和为x,再在区间[ i , r[i] ]这个区间内用最小值线段树查找一个点使得这个点的前缀和最小设最小前缀和为y,这样y-x就为区间[ l[i] , r[i] ]内区间和最小的子区间和。

接下来枚举每一个a[i],求出区间值,更新ans就好了。

代码:

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=5e5+;
int n,m,q,l[N],r[N];
ll sum[N],a[N];
stack<ll> st;
ll tr[][N*];
void pushup(int rt){
tr[][rt]=max(tr[][rt<<],tr[][rt<<|]);
tr[][rt]=min(tr[][rt<<],tr[][rt<<|]);
}
void build(int l,int r,int rt){
if(l==r){
tr[][rt]=tr[][rt]=sum[l];
return;
}
int mid=(l+r)/;
build(l,mid,rt*);
build(mid+,r,rt*+);
pushup(rt);
}
ll ask0(int L,int R,int l,int r ,int rt){ //查找[L,R]区间内的最大值
if(L<=l&&R>=r) return tr[][rt];
ll ans=-1e18;
int mid=(l+r)/;
if(mid>=L) ans=max(ans,ask0(L,R,l,mid,rt*));
if(mid<R) ans=max(ans,ask0(L,R,mid+,r,rt*+));
return ans;
}
ll ask1(int L,int R,int l,int r ,int rt){ //查找[L,R]区间内的最小值
if(L<=l&&R>=r) return tr[][rt];
ll ans=1e18;
int mid=(l+r)/;
if(mid>=L) ans=min(ans,ask1(L,R,l,mid,rt*));
if(mid<R) ans=min(ans,ask1(L,R,mid+,r,rt*+));
return ans;
}
int main(){
cin>>n;
for(int i=;i<=n;i++){
cin>>a[i];
sum[i]=sum[i-]+a[i];
}
build(,n,);
for(int i=;i<=n;i++){ //单调栈找左边界
while(st.size()&&a[st.top()]>=a[i])st.pop();
if(st.size()) l[i]=st.top()+;
else l[i]=;
st.push(i);
}
while(st.size()) st.pop();
for(int i=n;i>=;i--){ //单调栈找右边界
while(st.size()&&a[st.top()]>=a[i])st.pop();
if(st.size()) r[i]=st.top()-;
else r[i]=n;
st.push(i);
}
ll ans=-1e18;
for(int i=;i<=n;i++){ //枚举每一个a[i]
int L=l[i],R=r[i];
if(a[i]<){
ll x=ask0(max(L-,),max(i-,),,n,);
if(L==&&x<) x=; //特判L==1的情况
ll y=ask1(i,R,,n,);
ans=max(ans,(y-x)*a[i]);
}else ans=max(ans,(sum[R]-sum[L-])*a[i]);
}
cout<<ans<<endl;
return ;
}

The Preliminary Contest for ICPC China Nanchang National Invitational I. Max answer (单调栈+线段树)的更多相关文章

  1. The Preliminary Contest for ICPC China Nanchang National Invitational I.Max answer单调栈

    题面 题意:一个5e5的数组,定义一个区间的值为 这个区间的和*这个区间的最小值,注意数组值有负数有正数,求所有区间中最大的值 题解:如果全是正数,那就是原题 POJ2796 单调栈做一下就ok 我们 ...

  2. 计蒜客 38228. Max answer-线段树维护单调栈(The Preliminary Contest for ICPC China Nanchang National Invitational I. Max answer 南昌邀请赛网络赛) 2019ICPC南昌邀请赛网络赛

    Max answer Alice has a magic array. She suggests that the value of a interval is equal to the sum of ...

  3. 2019The Preliminary Contest for ICPC China Nanchang National Invitational

    The Preliminary Contest for ICPC China Nanchang National Invitational 题目一览表 考察知识点 I. Max answer 单调栈+ ...

  4. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

  5. The Preliminary Contest for ICPC China Nanchang National Invitational

    目录 Contest Info Solutions A. PERFECT NUMBER PROBLEM D. Match Stick Game G. tsy's number H. Coloring ...

  6. The Preliminary Contest for ICPC China Nanchang National Invitational and International Silk-Road Programming Contest

    打网络赛 比赛前的准备工作要做好 确保 c++/java/python的编译器能用 打好模板,放在桌面 A. PERFECT NUMBER PROBLEM #include <cstdio> ...

  7. The Preliminary Contest for ICPC China Nanchang National Invitational I题

    Alice has a magic array. She suggests that the value of a interval is equal to the sum of the values ...

  8. Max answer(The Preliminary Contest for ICPC China Nanchang National Invitational)

    Alice has a magic array. She suggests that the value of a interval is equal to the sum of the values ...

  9. 2019 The Preliminary Contest for ICPC China Nanchang National Invitational(A 、H 、I 、K 、M)

    A. PERFECT NUMBER PROBLEM 题目链接:https://nanti.jisuanke.com/t/38220 题意: 输出前五个完美数 分析: 签到.直接百度完美数输出即可 #i ...

随机推荐

  1. bootstrap实现表格

    基本实例样式 效果 代码 <!DOCTYPE html> <html lang="en"> <head> <meta charset=&q ...

  2. c#调用word文件

    大家好!我叫蓝颜,我是一名大专生.这是我第一次接触博客园,以后也会一直在. 在学校期间,参加技能大赛(物联网),接触到的C#.之后学校教务处要一个调课软件, 于是我就小试牛刀试了试.当然了,这也是我第 ...

  3. 【English】五、颜色相关

    一.常见颜色 黑色    black    白色    white    蓝色    blue    橙色    orange    黄色    yellow        灰色    gray   ...

  4. Git的安装与配置

    在安装Git之前,首先要下载Git安装包. 下载地址:https://gitforwindows.org/ 下载完后打开安装:如下步骤                       按着以上步骤安装完成 ...

  5. Linux下载_Linux系统各种版本ISO镜像下载(redhat,centos,oracle,ubuntu,openSUSE)

    以下是风哥收集的Linux系统各种版本ISO镜像下载,包括redhat,centos,oracle,ubuntu等linux操作系统. Linux下载1:红帽RedHat Linux(RHEL5.RH ...

  6. scp远程拷贝文件及文件夹

    scp : 远程copy 命令 -r : 递归copy 从Linux Copy 到 Linux 从Linux Copy 到 Windows (当前目录使用. 就可以了) scp -r root@10. ...

  7. mysql8.0.主从复制搭建

    搭建主从数据库 一.准备两台以上对的数据库 数据库1(主服务器):192.168.2.2 数据库2(从服务器):192.168.2.4           1.1      配置主服务器 .在 /et ...

  8. Win7/Win8.1升级Win10后屏幕一直闪烁怎么办?

    有些用户在把Win7/Win8.1升级到Win10正式版后,发现屏幕一直不停闪烁,以至于无法正常使用.出现这种情况的原因可能有很多,微软社区的论坛审阅人Alex_Shen给出了一种解决方案:进入安全模 ...

  9. 《Python 数据库 GUI CGI编程》

    本文地址:http://www.cnblogs.com/aiweixiao/p/8390417.html 原文地址 点击关注微信公众号 wenyuqinghuai 1.写在前边 上一次,我们介绍了Py ...

  10. mysql容灾备份脚本

    一,环境需求 **安装前准备 操作系统环境:Centos 7.2 [root@localhost soft]# rpm -qa | grep mariadb [root@localhost soft] ...