JDK源码分析(9) LinkedHashMap
概述
LinkedHashMap
是一个关联数组、哈希表,它是线程不安全的,允许key为null,value为null。他继承自HashMap
,实现了Map<K,V>
接口。其内部还维护了一个双向链表,在每次插入数据,或者访问、修改数据时,会增加节点、或调整链表的节点顺序。以决定迭代时输出的顺序。
默认情况,遍历时的顺序是按照插入节点的顺序。这也是其与HashMap
最大的区别。也可以在构造时传入accessOrder
参数,使得其遍历顺序按照访问的顺序输出。
构造函数
//默认是false,则迭代时输出的顺序是插入节点的顺序。若为true,则输出的顺序是按照访问节点的顺序。
//为true时,可以在这基础之上构建一个LruCach
final boolean accessOrder;
public LinkedHashMap() {
super();
accessOrder = false;
}
//指定初始化时的容量,
public LinkedHashMap(int initialCapacity) {
super(initialCapacity);
accessOrder = false;
}
//指定初始化时的容量,和扩容的加载因子
public LinkedHashMap(int initialCapacity, float loadFactor) {
super(initialCapacity, loadFactor);
accessOrder = false;
}
//指定初始化时的容量,和扩容的加载因子,以及迭代输出节点的顺序
public LinkedHashMap(int initialCapacity,
float loadFactor,
boolean accessOrder) {
super(initialCapacity, loadFactor);
this.accessOrder = accessOrder;
}
//利用另一个Map 来构建,
public LinkedHashMap(Map<? extends K, ? extends V> m) {
super();
accessOrder = false;
//该方法上文分析过,批量插入一个map中的所有数据到 本集合中。
putMapEntries(m, false);
}
小结:
构造函数和HashMap
相比,就是增加了一个accessOrder
参数。用于控制迭代时的节点顺序。
节点
LinkedHashMap
的节点Entry<K,V>
继承自HashMap<K,V>
,在其基础上扩展了一下。改成了一个双向链表。
static class Entry<K,V> extends HashMap.Node<K,V> {
Entry<K,V> before, after;
Entry(int hash, K key, V value, Node<K,V> next) {
super(hash, key, value, next);
}
}
同时类里有两个成员变量head tail
,分别指向内部双向链表的表头、表尾。
//双向链表的头结点
transient LinkedHashMap.Entry<K,V> head;
//双向链表的尾节点
transient LinkedHashMap.Entry<K,V> tail;
增
LinkedHashMap
并没有重写任何put方法。但是其重写了构建新节点的newNode()
方法.
newNode()
会在HashMap
的putVal()
方法里被调用,putVal()
方法会在批量插入数据putMapEntries(Map<? extends K, ? extends V> m, boolean evict)
或者插入单个数据public V put(K key, V value)
时被调用。
LinkedHashMap
重写了newNode()
,在每次构建新节点时,通过linkNodeLast(p)
;将新节点链接在内部双向链表的尾部。
//在构建新节点时,构建的是`LinkedHashMap.Entry` 不再是`Node`.
Node<K,V> newNode(int hash, K key, V value, Node<K,V> e) {
LinkedHashMap.Entry<K,V> p =
new LinkedHashMap.Entry<K,V>(hash, key, value, e);
linkNodeLast(p);
return p;
}
//将新增的节点,连接在链表的尾部
private void linkNodeLast(LinkedHashMap.Entry<K,V> p) {
LinkedHashMap.Entry<K,V> last = tail;
tail = p;
//集合之前是空的
if (last == null)
head = p;
else {//将新节点连接在链表的尾部
p.before = last;
last.after = p;
}
}
以及HashMap
专门预留给LinkedHashMap
的afterNodeAccess() afterNodeInsertion() afterNodeRemoval()
方法。
// Callbacks to allow LinkedHashMap post-actions
void afterNodeAccess(Node<K,V> p) { }
void afterNodeInsertion(boolean evict) { }
void afterNodeRemoval(Node<K,V> p) { }
//回调函数,新节点插入之后回调 , 根据evict 和 判断是否需要删除最老插入的节点。如果实现LruCache会用到这个方法。
void afterNodeInsertion(boolean evict) { // possibly remove eldest
LinkedHashMap.Entry<K,V> first;
//LinkedHashMap 默认返回false 则不删除节点
if (evict && (first = head) != null && removeEldestEntry(first)) {
K key = first.key;
removeNode(hash(key), key, null, false, true);
}
}
//LinkedHashMap 默认返回false 则不删除节点。 返回true 代表要删除最早的节点。通常构建一个LruCache会在达到Cache的上限是返回true
protected boolean removeEldestEntry(Map.Entry<K,V> eldest) {
return false;
}
void afterNodeInsertion(boolean evict)
以及boolean removeEldestEntry(Map.Entry<K,V> eldest)
是构建LruCache需要的回调,在LinkedHashMap
里可以忽略它们。
删
LinkedHashMap
也没有重写remove()
方法,因为它的删除逻辑和HashMap
并无区别。
但它重写了afterNodeRemoval()
这个回调方法。该方法会在Node<K,V> removeNode(int hash, Object key, Object value, boolean matchValue, boolean movable)
方法中回调,removeNode()
会在所有涉及到删除节点的方法中被调用,是删除节点操作的真正执行者。
//在删除节点e时,同步将e从双向链表上删除
void afterNodeRemoval(Node<K,V> e) { // unlink
LinkedHashMap.Entry<K,V> p =
(LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
//待删除节点 p 的前置后置节点都置空
p.before = p.after = null;
//如果前置节点是null,则现在的头结点应该是后置节点a
if (b == null)
head = a;
else//否则将前置节点b的后置节点指向a
b.after = a;
//同理如果后置节点时null ,则尾节点应是b
if (a == null)
tail = b;
else//否则更新后置节点a的前置节点为b
a.before = b;
}
查
LinkedHashMap
重写了get()
和getOrDefault()
方法:
public V get(Object key) {
Node<K,V> e;
if ((e = getNode(hash(key), key)) == null)
return null;
if (accessOrder)
afterNodeAccess(e);
return e.value;
}
public V getOrDefault(Object key, V defaultValue) {
Node<K,V> e;
if ((e = getNode(hash(key), key)) == null)
return defaultValue;
if (accessOrder)
afterNodeAccess(e);
return e.value;
}
对比HashMap
中的实现,LinkedHashMap
只是增加了在成员变量(构造函数时赋值)accessOrder
为true的情况下,要去回调void afterNodeAccess(Node<K,V> e)
函数。
public V get(Object key) {
Node<K,V> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
}
在afterNodeAccess()
函数中,会将当前被访问到的节点e,移动至内部的双向链表的尾部。
void afterNodeAccess(Node<K,V> e) { // move node to last
LinkedHashMap.Entry<K,V> last;//原尾节点
//如果accessOrder 是true ,且原尾节点不等于e
if (accessOrder && (last = tail) != e) {
//节点e强转成双向链表节点p
LinkedHashMap.Entry<K,V> p =
(LinkedHashMap.Entry<K,V>)e, b = p.before, a = p.after;
//p现在是尾节点, 后置节点一定是null
p.after = null;
//如果p的前置节点是null,则p以前是头结点,所以更新现在的头结点是p的后置节点a
if (b == null)
head = a;
else//否则更新p的前直接点b的后置节点为 a
b.after = a;
//如果p的后置节点不是null,则更新后置节点a的前置节点为b
if (a != null)
a.before = b;
else//如果原本p的后置节点是null,则p就是尾节点。 此时 更新last的引用为 p的前置节点b
last = b;
if (last == null) //原本尾节点是null 则,链表中就一个节点
head = p;
else {//否则 更新 当前节点p的前置节点为 原尾节点last, last的后置节点是p
p.before = last;
last.after = p;
}
//尾节点的引用赋值成p
tail = p;
//修改modCount。
++modCount;
}
}
值得注意的是,afterNodeAccess()
函数中,会修改modCount
,因此当你正在accessOrder=true
的模式下,迭代LinkedHashMap
时,如果同时查询访问数据,也会导致fail-fast
,因为迭代的顺序已经改变。
containsValue
它重写了该方法,相比HashMap
的实现,更为高效。
public boolean containsValue(Object value) {
//遍历一遍链表,去比较有没有value相等的节点,并返回
for (LinkedHashMap.Entry<K,V> e = head; e != null; e = e.after) {
V v = e.value;
if (v == value || (value != null && value.equals(v)))
return true;
}
return false;
}
对比HashMap
,是用两个for循环遍历,相对低效。
public boolean containsValue(Object value) {
Node<K,V>[] tab; V v;
if ((tab = table) != null && size > 0) {
for (int i = 0; i < tab.length; ++i) {
for (Node<K,V> e = tab[i]; e != null; e = e.next) {
if ((v = e.value) == value ||
(value != null && value.equals(v)))
return true;
}
}
}
return false;
}
遍历
重写了entrySet()
如下:
public Set<Map.Entry<K,V>> entrySet() {
Set<Map.Entry<K,V>> es;
//返回LinkedEntrySet
return (es = entrySet) == null ? (entrySet = new LinkedEntrySet()) : es;
}
final class LinkedEntrySet extends AbstractSet<Map.Entry<K,V>> {
public final Iterator<Map.Entry<K,V>> iterator() {
return new LinkedEntryIterator();
}
}
最终的EntryIterator:
final class LinkedEntryIterator extends LinkedHashIterator
implements Iterator<Map.Entry<K,V>> {
public final Map.Entry<K,V> next() { return nextNode(); }
}
abstract class LinkedHashIterator {
//下一个节点
LinkedHashMap.Entry<K,V> next;
//当前节点
LinkedHashMap.Entry<K,V> current;
int expectedModCount;
LinkedHashIterator() {
//初始化时,next 为 LinkedHashMap内部维护的双向链表的扁头
next = head;
//记录当前modCount,以满足fail-fast
expectedModCount = modCount;
//当前节点为null
current = null;
}
//判断是否还有next
public final boolean hasNext() {
//就是判断next是否为null,默认next是head 表头
return next != null;
}
//nextNode() 就是迭代器里的next()方法 。
//该方法的实现可以看出,迭代LinkedHashMap,就是从内部维护的双链表的表头开始循环输出。
final LinkedHashMap.Entry<K,V> nextNode() {
//记录要返回的e。
LinkedHashMap.Entry<K,V> e = next;
//判断fail-fast
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
//如果要返回的节点是null,异常
if (e == null)
throw new NoSuchElementException();
//更新当前节点为e
current = e;
//更新下一个节点是e的后置节点
next = e.after;
//返回e
return e;
}
//删除方法 最终还是调用了HashMap的removeNode方法
public final void remove() {
Node<K,V> p = current;
if (p == null)
throw new IllegalStateException();
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
current = null;
K key = p.key;
removeNode(hash(key), key, null, false, false);
expectedModCount = modCount;
}
}
值得注意的就是:nextNode()
就是迭代器里的next()
方法 。
该方法的实现可以看出,迭代LinkedHashMap
,就是从内部维护的双链表的表头开始循环输出。
而双链表节点的顺序在LinkedHashMap的增、删、改、查时都会更新。以满足按照插入顺序输出,还是访问顺序输出。
总结
LinkedHashMap
相对于HashMap
的源码比,是很简单的。因为大树底下好乘凉。它继承了HashMap
,仅重写了几个方法,以改变它迭代遍历时的顺序。这也是其与HashMap
相比最大的不同。
在每次插入数据,或者访问、修改数据时,会增加节点、或调整链表的节点顺序。以决定迭代时输出的顺序。
accessOrder
,默认是false,则迭代时输出的顺序是插入节点的顺序。若为true,则输出的顺序是按照访问节点的顺序。为true时,可以在这基础之上构建一个LruCache
.LinkedHashMap
并没有重写任何put方法。但是其重写了构建新节点的newNode()方法.在每次构建新节点时,将新节点链接在内部双向链表的尾部.accessOrder=true
的模式下,在afterNodeAccess()
函数中,会将当前被访问到的节点e,移动至内部的双向链表的尾部。值得注意的是,afterNodeAccess()
函数中,会修改modCount
,因此当你正在accessOrder=true
的模式下,迭代LinkedHashMap
时,如果同时查询访问数据,也会导致fail-fast
,因为迭代的顺序已经改变.nextNode()
就是迭代器里的next()
方法。该方法的实现可以看出,迭代LinkedHashMap
,就是从内部维护的双链表的表头开始循环输出。而双链表节点的顺序在LinkedHashMap
的增、删、改、查时都会更新。以满足按照插入顺序输出,还是访问顺序输出.- 它与
HashMap
比,还有一个小小的优化,重写了containsValue()
方法,直接遍历内部链表去比对value值是否相等.
JDK源码分析(9) LinkedHashMap的更多相关文章
- JDK源码分析(四)——LinkedHashMap
目录 LinkedHashMap概述 内部字段及构造方法 存储元素 取出元素 删除元素 迭代器 利用LinkedHashMap简单实现LRU算法 总结 LinkedHashMap概述 JDK对Li ...
- JDK 源码分析(4)—— HashMap/LinkedHashMap/Hashtable
JDK 源码分析(4)-- HashMap/LinkedHashMap/Hashtable HashMap HashMap采用的是哈希算法+链表冲突解决,table的大小永远为2次幂,因为在初始化的时 ...
- 【JDK】JDK源码分析-LinkedHashMap
概述 前文「JDK源码分析-HashMap(1)」分析了 HashMap 主要方法的实现原理(其他问题以后分析),本文分析下 LinkedHashMap. 先看一下 LinkedHashMap 的类继 ...
- 【JDK】JDK源码分析-HashMap(1)
概述 HashMap 是 Java 开发中最常用的容器类之一,也是面试的常客.它其实就是前文「数据结构与算法笔记(二)」中「散列表」的实现,处理散列冲突用的是“链表法”,并且在 JDK 1.8 做了优 ...
- JDK源码分析—— ArrayBlockingQueue 和 LinkedBlockingQueue
JDK源码分析—— ArrayBlockingQueue 和 LinkedBlockingQueue 目的:本文通过分析JDK源码来对比ArrayBlockingQueue 和LinkedBlocki ...
- JDK源码分析(三)—— LinkedList
参考文档 JDK源码分析(4)之 LinkedList 相关
- JDK源码分析(一)—— String
dir 参考文档 JDK源码分析(1)之 String 相关
- JDK源码分析(2)LinkedList
JDK版本 LinkedList简介 LinkedList 是一个继承于AbstractSequentialList的双向链表.它也可以被当作堆栈.队列或双端队列进行操作. LinkedList 实现 ...
- 【JDK】JDK源码分析-TreeMap(2)
前文「JDK源码分析-TreeMap(1)」分析了 TreeMap 的一些方法,本文分析其中的增删方法.这也是红黑树插入和删除节点的操作,由于相对复杂,因此单独进行分析. 插入操作 该操作其实就是红黑 ...
- 【JDK】JDK源码分析-Vector
概述 上文「JDK源码分析-ArrayList」主要分析了 ArrayList 的实现原理.本文分析 List 接口的另一个实现类:Vector. Vector 的内部实现与 ArrayList 类似 ...
随机推荐
- CODING 如何使用 CODING 研发管理系统来敏捷开发
之前我们分享过<CODING 如何使用 CODING 开发 CODING>的文章,时过境迁,现在 CODING 研发管理系统已经上线了如持续集成.缺陷管理.测试管理等 DevOps 中的重 ...
- harris角点检测的简要总结
目录 1. 概述相关 2. 原理详解 1) 算法思想 2) 数学模型 3) 优化推导 3. 具体实现 1) 详细步骤 2) 最终实现 4. 参考文献 1. 概述相关 harris角点检测是一种特征提取 ...
- 处理范例代码Webapi中的Mongodb的Bson中ObjectId反序列化异常
微软代码范例中的一个Bug 处理Mongodb的Bson中ObjectId反序列化异常 https://docs.microsoft.com/zh-cn/aspnet/core/tutorials/f ...
- KsUML 免费的类图建模工具
最近基于SharpDevelop和NClass两个开源软件,开发了一个免费的类图建模工具,详情请访问 www.TimeGIS.com KsUML类图建模工具是一个用来给软件开发人员使用的一种UML类图 ...
- 基于GitLab的Code Review教程
一.前言 1.本文主要内容 GitLab Code Review机制说明 Git Workflow 与 Git Code Review Workflow GitLab Code Review 配置说明 ...
- WebApi 身份认证解决方案:Basic基础认证
前言:最近,讨论到数据库安全的问题,于是就引出了WebApi服务没有加任何验证的问题.也就是说,任何人只要知道了接口的url,都能够模拟http请求去访问我们的服务接口,从而去增删改查数据库,这后果想 ...
- eclipse导入maven项目,但无法编译的问题
同事今天从git 导入项目到eclipse 后,发现项目所依赖的包找不到依赖,初步判定是maven的依赖没有导入项目中. 最终发现,在项目中的.classpath 文件加入以下代码即可解决问题. &l ...
- Installing the Ranger Kafka Plug-in
This section describes how to install and enable the Ranger Kafka plug-in. The Ranger Kafka plug-in ...
- java学习入门之---使用idea创建第一个maven项目
一.准备条件: 1.安装idea旗舰版 2.安装tomcat 二.打开idea开始创建 1.创建Project 2.选择项目类型为maven 3.输入组名和项目名 ---> 下一步 ----&g ...
- oracle 基础查询语句
select abs(10) from dual; --取绝对值select ceil(3.6) from dual;--向上取整 select power(2,3) from dual;--2的3次 ...