题意:给定n个数a1,a2····an,依次求出相邻两个数值和,将得到一个新数列,重复上述操作,最后结果将变为一个数,问这个数除以m的余数与那些数无关?

思路:最后观察期规律符合杨辉三角,那么,问题就可以变成判断C(0,n-1),C(1,n-1)。。。。C(n-1,n-1)哪些是m的倍数,所以只需考虑m唯一分解后在C(i,n-1)中的情况

公式:C(k,n)=(n-i+1)*c(i-1,n)/k. 然后利用递推公式检查m的因子,只要(n-i+1)/i是m倍数即可

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <map>
#include <vector>
using namespace std;
typedef long long ll;
typedef unsigned long long ull; int pm[1000],nm[1000];
int cur; void ini(int m) //分解m
{
cur = 0;
memset(pm,0,sizeof(pm));
memset(nm,0,sizeof(nm));
for(int i = 2; i*i <= m ; i ++)
{
if(m % i == 0)
{
pm[cur] = i;
while(m % i == 0)
{
m /= i;
nm[cur]++;
}
cur++;
}
}
if(m > 1)
{
pm[cur] = m;
nm[cur++] = 1;
}
} bool can_do(int x,int y) //检查因子
{
bool flag=true;
for(int i=0; i<cur; ++i)
{
while((x%pm[i]==0) && (x/=pm[i]))
nm[i]--;
while((y%pm[i]==0) && (y/=pm[i]))
nm[i]++;
if(nm[i]>0)
flag=false;
}
return flag;
}
int ans[100050]; int main()
{
int m,n;
while(~scanf("%d%d",&n,&m))
{
ini(m);
int tot = 0;
for(int i = 1; i <= n; i++)
{
if(can_do(n-i,i)) //n-i = (n-1)-i+1
{
ans[tot++] = i+1;
}
}
printf("%d\n",tot);
if(tot != 0)
{
for(int i = 0; i < tot-1; i++)
if(ans[i])
printf("%d ",ans[i]);
printf("%d",ans[tot-1]); }
printf("\n");
}
return 0;
}

  

例10-6 uva1635(唯一分解定理)的更多相关文章

  1. 例10-3 uva10375(唯一分解定理)

    题意:已知C(m,n) = m!/(n!(m-n)!),已知p,q,r,s,求C(p,q)/C(r,s) 思路: 全部分解成质因子,相乘则加,除则减 #include <iostream> ...

  2. LightOJ-1236 Pairs Forming LCM 唯一分解定理

    题目链接:https://cn.vjudge.net/problem/LightOJ-1236 题意 给一整数n,求有多少对a和b(a<=b),使lcm(a, b)=n 注意数据范围n<= ...

  3. 【组合数的唯一分解定理】Uva1635

    给出n.m,求得最终求和数列an=C(n-1,0)*x1 + C(n-1,1)*x2+...+C(n-1,n-1)*xn; 若xi与m无关,则an除以m的余数与xi无关,即余数不含xi的项: 输入:n ...

  4. 唯一分解定理(以Minimun Sum LCM UVa 10791为例)

    唯一分解定理是指任何正整数都可以分解为一些素数的幂之积,即任意正整数n=a1^p1*a2^p2*...*ai^pi:其中ai为任意素数,pi为任意整数. 题意是输入整数n,求至少2个整数,使得它们的最 ...

  5. LightOJ 1341 - Aladdin and the Flying Carpet (唯一分解定理 + 素数筛选)

    http://lightoj.com/volume_showproblem.php?problem=1341 Aladdin and the Flying Carpet Time Limit:3000 ...

  6. FZU 1075 分解素因子【数论/唯一分解定理/分解素因子裸模板】

    [唯一分解定理]:https://www.cnblogs.com/mjtcn/p/6743624.html 假设x是一个正整数,它的值不超过65535(即1<x<=65535),请编写一个 ...

  7. POJ 1845-Sumdiv(快速幂取模+整数唯一分解定理+约数和公式+同余模公式)

    Sumdiv Time Limit:1000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u Submit Statu ...

  8. UVa10375:选择与除法(唯一分解定理)

    The binomial coefficient C(m,n) is defined as Given four natural numbers p, q, r, and s, compute the th ...

  9. Divisors (求解组合数因子个数)【唯一分解定理】

    Divisors 题目链接(点击) Your task in this problem is to determine the number of divisors of Cnk. Just for ...

  10. NOIP2009Hankson 的趣味题[唯一分解定理|暴力]

    题目描述 Hanks 博士是 BT (Bio-Tech,生物技术) 领域的知名专家,他的儿子名叫 Hankson.现 在,刚刚放学回家的 Hankson 正在思考一个有趣的问题. 今天在课堂上,老师讲 ...

随机推荐

  1. django搭建web (四) models.py

    demo 该demo模型主要是用于问题,选择单个或多个答案的问卷形式应用 # -*- coding: utf-8 -*- from __future__ import unicode_literals ...

  2. 201621123043《java程序设计》第4周学习总结

    1. 本周学习总结 1.1 写出你认为本周学习中比较重要的知识点关键词 关键字:继承.覆盖.多态 1.2 尝试使用思维导图将这些关键词组织起来.注:思维导图一般不需要出现过多的字. 1.3 可选:使用 ...

  3. 从PRISM开始学WPF(五)MVVM(一)ViewModel?

    从PRISM开始学WPF(一)WPF? 从PRISM开始学WPF(二)Prism? 从PRISM开始学WPF(三)Prism-Region? 从PRISM开始学WPF(四)Prism-Module? ...

  4. django的FBV和CBV

    title: python djano CBV FBV tags: python, djano, CBV, FBV grammar_cjkRuby: true --- python django的fu ...

  5. Python内置函数(35)——next

    英文文档: next(iterator[, default]) Retrieve the next item from the iterator by calling its __next__() m ...

  6. dubbo的InvocationChain

    个人觉得dubbo比较好的设计是:一个是Cooma微容器设计.另一个就是InvocationChain了 Cooma微容器是自己实现了一套SPI,方便了用户做扩展: InvocationChain类似 ...

  7. Angular组件——父组件调用子组件方法

    viewChild装饰器. 父组件的模版和控制器里调用子组件的API. 1.创建一个子组件child1里面只有一个greeting方法供父组件调用. import { Component, OnIni ...

  8. jhipster生成项目无法使用restful请求,报access_denied 403错误

    写在前边: 我们的微服务是注册中心.uaa.gateway为基础,添加微服务应用,昨天下午在测试jhipster的增删改查,因为jhipster生成的代码都是restful的,好不容易找到网关配置的映 ...

  9. notepad++运行Python

    1.打开notepad++的菜单栏,点击run 2.输入cmd /k python "$(FULL_CURRENT_PATH)" & PAUSE & EXIT 3. ...

  10. [SHOI2009] 会场预约 - Treap

    Description PP大厦有一间空的礼堂,可以为企业或者单位提供会议场地.这些会议中的大多数都需要连续几天的时间(个别的可能只需要一天),不过场地只有一个,所以不同的会议的时间申请不能够冲突.也 ...