●BZOJ 3551 [ONTAK2010]Peaks(在线)
题链:
http://www.lydsy.com/JudgeOnline/problem.php?id=3551
题解:
最小生成树 Kruskal,主席树,在线
这个做法挺巧妙的。。。
以Kruskal算法为基础,如果在用边 e(u,v,w) 合并 u 和 v 所在的联通块时,
我们新加一个节点 x(同时给它一个权值 w,即边 e 的权值),
使得 u的联通块和 v的联通块通过这个节点 x 来合并为一个联通块。
那么当Kruskal算法完成时,那么也就生成了一颗二叉树。
不难发现,这个二叉树非常棒啊:
1).叶子代表原图中的点,共有 N 个叶子
2).对于一个节点 x 来说,如果其点权为 w,
则表明 x 的子树的叶子节点所代表的的那些原图中的点可以通过边权不超过 w 的边互相通达。
所以按照如上方法生成了一颗二叉树后,
dfs一遍计算出每个节点所包含叶子节点的范围
(l[u],r[u]表示 u 这个节点的所包含叶子节点的范围是第 l[u]个叶子到第 R[u]个叶子)
然后按照叶子节点的顺序对原图的点的高度建立主席树。
每次查询v,x,k时,
就在二叉树中从该叶子向上倍增,
找到一个最大的子树使得该子树的根的权值不超过 x
然后得到范围 l[x] r[x],并在主席树 rt[l[x]-1]~rt[r[x]] 中查询第 k 大就好了。
代码:
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define MAXN 105000
using namespace std;
int H[MAXN],tmp[MAXN],Ord[MAXN];
int N,M,Q,tnt,Ont;
struct Edge{
int u,v,w;
bool operator <(const Edge &rtm)const{
return w<rtm.w;
}
}E[MAXN*5];
struct CMT{
int rt[MAXN],ls[MAXN*20],rs[MAXN*20],cnt[MAXN*20],sz;
void Insert(int &u,int l,int r,int p){
sz++; cnt[sz]=cnt[u]; ls[sz]=ls[u]; rs[sz]=rs[u];
u=sz; cnt[u]++;
if(l==r) return;
int mid=(l+r)>>1;
if(p<=mid) Insert(ls[u],l,mid,p);
else Insert(rs[u],mid+1,r,p);
}
int Query(int v,int u,int l,int r,int K){
if(l==r) return l;
int mid=(l+r)>>1,rcnt=cnt[rs[u]]-cnt[rs[v]];
if(K<=rcnt) return Query(rs[v],rs[u],mid+1,r,K);
else return Query(ls[v],ls[u],l,mid,K-rcnt);
}
void Build(){
for(int i=1;i<=N;i++){
rt[i]=rt[i-1];
Insert(rt[i],1,tnt,H[Ord[i]]);
}
}
}DT;//维护成重构的二叉树的底层叶子节点信息的主席树
struct BT{
int bel[MAXN*2],ls[MAXN*2],rs[MAXN*2],l[MAXN*2],r[MAXN*2],val[MAXN*2],fa[MAXN*2][20];
int sz,rt;
void Newnode(int u,int lson,int rson,int w){
val[u]=w; bel[lson]=u; bel[rson]=u;
ls[u]=lson; rs[u]=rson;
}
int Find(int x){
return x==bel[x]?x:bel[x]=Find(bel[x]);
}
void Dfs(int u,int f){
fa[u][0]=f;
for(int k=1;k<20;k++){
if(!fa[u][k-1]||!fa[fa[u][k-1]][k-1]) break;
fa[u][k]=fa[fa[u][k-1]][k-1];
}
if(!ls[u]&&!rs[u]){
Ord[++Ont]=u; l[u]=r[u]=Ont;
return;
}
Dfs(ls[u],u); Dfs(rs[u],u);
l[u]=l[ls[u]]; r[u]=r[rs[u]];
}
void Build(){
sz=N;
for(int i=1;i<=2*N;i++) bel[i]=i;
for(int i=1,fu,fv;i<=M;i++){
fu=Find(E[i].u);
fv=Find(E[i].v);
if(fu==fv) continue;
Newnode(++sz,fu,fv,E[i].w);
}
rt=sz; Dfs(rt,0);
}
int Query(int u,int w,int K){
for(int k=19;k>=0;k--){
if(!fa[u][k]||val[fa[u][k]]>w) continue;
u=fa[u][k];
}
int lrt=DT.rt[l[u]-1],rrt=DT.rt[r[u]];
if(DT.cnt[rrt]-DT.cnt[lrt]<K) return -1;
return tmp[DT.Query(lrt,rrt,1,tnt,K)];
}
}GT;//根据Kruskal重构的二叉树
void read(int &x){
static int f; static char ch;
x=0; f=1; ch=getchar();
while(ch<'0'||'9'<ch){if(ch=='-') f=-1; ch=getchar();}
while('0'<=ch&&ch<='9'){x=x*10+ch-'0'; ch=getchar();}
x=x*f;
}
void readin(){
read(N); read(M); read(Q);
for(int i=1;i<=N;i++) read(H[i]),tmp[i]=H[i];
sort(tmp+1,tmp+N+1);
tnt=unique(tmp+1,tmp+N+1)-tmp-1;
for(int i=1;i<=N;i++)
H[i]=lower_bound(tmp+1,tmp+tnt+1,H[i])-tmp;
for(int i=1;i<=M;i++)
read(E[i].u),read(E[i].v),read(E[i].w);
sort(E+1,E+M+1);
}
void answer(){
static int V,X,K,lastANS;
for(int i=1;i<=Q;i++){
scanf("%d%d%d",&V,&X,&K);
if(lastANS!=-1) V^=lastANS,X^=lastANS,K^=lastANS;
lastANS=GT.Query(V,X,K);
printf("%d\n",lastANS);
}
}
int main(){
readin();
GT.Build();
DT.Build();
answer();
return 0;
}
●BZOJ 3551 [ONTAK2010]Peaks(在线)的更多相关文章
- BZOJ 3551: [ONTAK2010]Peaks加强版 [Kruskal重构树 dfs序 主席树]
3551: [ONTAK2010]Peaks加强版 题意:带权图,多组询问与一个点通过边权\(\le lim\)的边连通的点中点权k大值,强制在线 PoPoQQQ大爷题解传送门 说一下感受: 容易发现 ...
- bzoj 3551: [ONTAK2010]Peaks加强版
Description [题目描述]同3545 Input 第一行三个数N,M,Q. 第二行N个数,第i个数为h_i 接下来M行,每行3个数a b c,表示从a到b有一条困难值为c的双向路径. 接下来 ...
- BZOJ.3551.[ONTAK2010]Peaks加强版(Kruskal重构树 主席树)
题目链接 \(Description\) 有n个座山,其高度为hi.有m条带权双向边连接某些山.多次询问,每次询问从v出发 只经过边权<=x的边 所能到达的山中,第K高的是多少. 强制在线. \ ...
- bzoj 3551 [ONTAK2010]Peaks加强版(kruskal,主席树,dfs序)
Description [题目描述]同3545 Input 第一行三个数N,M,Q. 第二行N个数,第i个数为h_i 接下来M行,每行3个数a b c,表示从a到b有一条困难值为c的双向路径. 接下来 ...
- 【刷题】BZOJ 3551 [ONTAK2010]Peaks加强版
Description [题目描述]同3545 Input 第一行三个数N,M,Q. 第二行N个数,第i个数为h_i 接下来M行,每行3个数a b c,表示从a到b有一条困难值为c的双向路径. 接下来 ...
- BZOJ 3551: [ONTAK2010]Peaks加强版 Kruskal重构树+dfs序+主席树+倍增
建出来 $Kruskal$ 重构树. 将询问点向上跳到深度最小,且合法的节点上. 那么,得益于重构树优美的性质,这个最终跳到的点为根的所有子节点都可以与询问点互达. 对于子树中求点权第 $k$ 大的问 ...
- 3551: [ONTAK2010]Peaks加强版
3551: [ONTAK2010]Peaks加强版 https://www.lydsy.com/JudgeOnline/problem.php?id=3551 分析: kruskal重构树 + 倍增 ...
- bzoj 3545&&3551: [ONTAK2010]Peaks &&加强版 平衡树&&并查集合并树&&主席树
3545: [ONTAK2010]Peaks Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 635 Solved: 177[Submit][Stat ...
- bzoj 3545/3551: [ONTAK2010]Peaks -- 主席树,最小生成树,倍增
3545: [ONTAK2010]Peaks Time Limit: 10 Sec Memory Limit: 128 MB Description 在Bytemountains有N座山峰,每座山峰 ...
随机推荐
- 详谈C++虚函数表那回事(多重继承关系)
上一篇说了一般继承,也就是单继承的虚函数表,接下来说说多重继承的虚函数表: 1.无虚函数覆盖的多重继承: 代码: #pragma once //无覆盖,多重继承 class Base1 { publi ...
- Flask 学习 九 用户资料
资料信息 app/models.py class User(UserMixin,db.Model): #...... name = db.Column(db.String(64)) location ...
- 【iOS】swift-文字宽度的计算
如图所示,需要sectionView的标题宽度可以动态变化 举例说明: 只需在tableView的代理方法 func tableView(tableView: UITableView, viewFor ...
- Node入门教程(5)第四章:global 全局变量
global - 全局变量 全局对象(global object),不要和 全局的对象( global objects )或称标准内置对象混淆.这里说的全局的对象是说在全局作用域里的内的对象.全局作用 ...
- iis / asp.net 使用 .config 和 .xml 文件的区别
由于在项目中有同学使用后缀为 .xml 的文件作为配置文件,而配置文件中有一些敏感信息被记录,如接口地址,Token,甚至还有数据库连接字符串. 以前都没想过为何微软会使用.config 的后缀在作为 ...
- python 面向对象之封装与类与对象
封装 一,引子 从封装本身的意思去理解,封装就好像是拿来一个麻袋,把小猫,小狗,小王八,小老虎一起装进麻袋,然后把麻袋封上口子.照这种逻辑看,封装='隐藏',这种理解是相当片面的 二,先看如何隐藏 在 ...
- JAVA_SE基础——55.自定义异常类
在Java中已经提供了大量的异常类,但是这些异常类有时野很难满足开发者的要求,所以用户可以根据自己的需要来定义自己的异常类.但自定义的异常类必须继承自Exception或其子类. 可以自定义出的问题称 ...
- JAVA_SE基础——35.static修饰成员函数
在Java中适用static关键字修饰的方法称为静态方法. 声明静态方法的语法格式如下: 权限修饰符 static 数据类型 方法名(){ 方法体 } 静态方法 可以使用类名直接调用 类名.方 ...
- JAVA_SE基础——4.path的临时配置&Classpath的配置
这次,我来写下关于path的临时配置的心的 我来说个有可能的实例:如果你去到别人的电脑 又想写代码 又不想改乱别人的path配置的话 再说别人愿意你在别人的电脑上瞎配吗? 那该怎么办呢? 那没问题 ...
- php后台的在控制器中就可以实现阅读数增加
$smodel=M('Sswz');$smodel->where($map)->setInc('view' ,1);php后台的在控制器中就可以实现阅读数增加前台不需要传值