题链:

http://www.lydsy.com/JudgeOnline/problem.php?id=3551

题解:

最小生成树 Kruskal,主席树,在线

这个做法挺巧妙的。。。
以Kruskal算法为基础,如果在用边 e(u,v,w) 合并 u 和 v 所在的联通块时,
我们新加一个节点 x(同时给它一个权值 w,即边 e 的权值),
使得 u的联通块和 v的联通块通过这个节点 x 来合并为一个联通块。

那么当Kruskal算法完成时,那么也就生成了一颗二叉树。

不难发现,这个二叉树非常棒啊:
1).叶子代表原图中的点,共有 N 个叶子
2).对于一个节点 x 来说,如果其点权为 w,
则表明 x 的子树的叶子节点所代表的的那些原图中的点可以通过边权不超过 w 的边互相通达。

所以按照如上方法生成了一颗二叉树后,
dfs一遍计算出每个节点所包含叶子节点的范围
(l[u],r[u]表示 u 这个节点的所包含叶子节点的范围是第 l[u]个叶子到第 R[u]个叶子)
然后按照叶子节点的顺序对原图的点的高度建立主席树。

每次查询v,x,k时,
就在二叉树中从该叶子向上倍增,
找到一个最大的子树使得该子树的根的权值不超过 x
然后得到范围 l[x] r[x],并在主席树 rt[l[x]-1]~rt[r[x]] 中查询第 k 大就好了。

代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define MAXN 105000
using namespace std;
int H[MAXN],tmp[MAXN],Ord[MAXN];
int N,M,Q,tnt,Ont;
struct Edge{
int u,v,w;
bool operator <(const Edge &rtm)const{
return w<rtm.w;
}
}E[MAXN*5];
struct CMT{
int rt[MAXN],ls[MAXN*20],rs[MAXN*20],cnt[MAXN*20],sz;
void Insert(int &u,int l,int r,int p){
sz++; cnt[sz]=cnt[u]; ls[sz]=ls[u]; rs[sz]=rs[u];
u=sz; cnt[u]++;
if(l==r) return;
int mid=(l+r)>>1;
if(p<=mid) Insert(ls[u],l,mid,p);
else Insert(rs[u],mid+1,r,p);
}
int Query(int v,int u,int l,int r,int K){
if(l==r) return l;
int mid=(l+r)>>1,rcnt=cnt[rs[u]]-cnt[rs[v]];
if(K<=rcnt) return Query(rs[v],rs[u],mid+1,r,K);
else return Query(ls[v],ls[u],l,mid,K-rcnt);
}
void Build(){
for(int i=1;i<=N;i++){
rt[i]=rt[i-1];
Insert(rt[i],1,tnt,H[Ord[i]]);
}
}
}DT;//维护成重构的二叉树的底层叶子节点信息的主席树
struct BT{
int bel[MAXN*2],ls[MAXN*2],rs[MAXN*2],l[MAXN*2],r[MAXN*2],val[MAXN*2],fa[MAXN*2][20];
int sz,rt;
void Newnode(int u,int lson,int rson,int w){
val[u]=w; bel[lson]=u; bel[rson]=u;
ls[u]=lson; rs[u]=rson;
}
int Find(int x){
return x==bel[x]?x:bel[x]=Find(bel[x]);
}
void Dfs(int u,int f){
fa[u][0]=f;
for(int k=1;k<20;k++){
if(!fa[u][k-1]||!fa[fa[u][k-1]][k-1]) break;
fa[u][k]=fa[fa[u][k-1]][k-1];
}
if(!ls[u]&&!rs[u]){
Ord[++Ont]=u; l[u]=r[u]=Ont;
return;
}
Dfs(ls[u],u); Dfs(rs[u],u);
l[u]=l[ls[u]]; r[u]=r[rs[u]];
}
void Build(){
sz=N;
for(int i=1;i<=2*N;i++) bel[i]=i;
for(int i=1,fu,fv;i<=M;i++){
fu=Find(E[i].u);
fv=Find(E[i].v);
if(fu==fv) continue;
Newnode(++sz,fu,fv,E[i].w);
}
rt=sz; Dfs(rt,0);
}
int Query(int u,int w,int K){
for(int k=19;k>=0;k--){
if(!fa[u][k]||val[fa[u][k]]>w) continue;
u=fa[u][k];
}
int lrt=DT.rt[l[u]-1],rrt=DT.rt[r[u]];
if(DT.cnt[rrt]-DT.cnt[lrt]<K) return -1;
return tmp[DT.Query(lrt,rrt,1,tnt,K)];
}
}GT;//根据Kruskal重构的二叉树
void read(int &x){
static int f; static char ch;
x=0; f=1; ch=getchar();
while(ch<'0'||'9'<ch){if(ch=='-') f=-1; ch=getchar();}
while('0'<=ch&&ch<='9'){x=x*10+ch-'0'; ch=getchar();}
x=x*f;
}
void readin(){
read(N); read(M); read(Q);
for(int i=1;i<=N;i++) read(H[i]),tmp[i]=H[i];
sort(tmp+1,tmp+N+1);
tnt=unique(tmp+1,tmp+N+1)-tmp-1;
for(int i=1;i<=N;i++)
H[i]=lower_bound(tmp+1,tmp+tnt+1,H[i])-tmp;
for(int i=1;i<=M;i++)
read(E[i].u),read(E[i].v),read(E[i].w);
sort(E+1,E+M+1);
}
void answer(){
static int V,X,K,lastANS;
for(int i=1;i<=Q;i++){
scanf("%d%d%d",&V,&X,&K);
if(lastANS!=-1) V^=lastANS,X^=lastANS,K^=lastANS;
lastANS=GT.Query(V,X,K);
printf("%d\n",lastANS);
}
}
int main(){
readin();
GT.Build();
DT.Build();
answer();
return 0;
}

●BZOJ 3551 [ONTAK2010]Peaks(在线)的更多相关文章

  1. BZOJ 3551: [ONTAK2010]Peaks加强版 [Kruskal重构树 dfs序 主席树]

    3551: [ONTAK2010]Peaks加强版 题意:带权图,多组询问与一个点通过边权\(\le lim\)的边连通的点中点权k大值,强制在线 PoPoQQQ大爷题解传送门 说一下感受: 容易发现 ...

  2. bzoj 3551: [ONTAK2010]Peaks加强版

    Description [题目描述]同3545 Input 第一行三个数N,M,Q. 第二行N个数,第i个数为h_i 接下来M行,每行3个数a b c,表示从a到b有一条困难值为c的双向路径. 接下来 ...

  3. BZOJ.3551.[ONTAK2010]Peaks加强版(Kruskal重构树 主席树)

    题目链接 \(Description\) 有n个座山,其高度为hi.有m条带权双向边连接某些山.多次询问,每次询问从v出发 只经过边权<=x的边 所能到达的山中,第K高的是多少. 强制在线. \ ...

  4. bzoj 3551 [ONTAK2010]Peaks加强版(kruskal,主席树,dfs序)

    Description [题目描述]同3545 Input 第一行三个数N,M,Q. 第二行N个数,第i个数为h_i 接下来M行,每行3个数a b c,表示从a到b有一条困难值为c的双向路径. 接下来 ...

  5. 【刷题】BZOJ 3551 [ONTAK2010]Peaks加强版

    Description [题目描述]同3545 Input 第一行三个数N,M,Q. 第二行N个数,第i个数为h_i 接下来M行,每行3个数a b c,表示从a到b有一条困难值为c的双向路径. 接下来 ...

  6. BZOJ 3551: [ONTAK2010]Peaks加强版 Kruskal重构树+dfs序+主席树+倍增

    建出来 $Kruskal$ 重构树. 将询问点向上跳到深度最小,且合法的节点上. 那么,得益于重构树优美的性质,这个最终跳到的点为根的所有子节点都可以与询问点互达. 对于子树中求点权第 $k$ 大的问 ...

  7. 3551: [ONTAK2010]Peaks加强版

    3551: [ONTAK2010]Peaks加强版 https://www.lydsy.com/JudgeOnline/problem.php?id=3551 分析: kruskal重构树 +  倍增 ...

  8. bzoj 3545&&3551: [ONTAK2010]Peaks &&加强版 平衡树&&并查集合并树&&主席树

    3545: [ONTAK2010]Peaks Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 635  Solved: 177[Submit][Stat ...

  9. bzoj 3545/3551: [ONTAK2010]Peaks -- 主席树,最小生成树,倍增

    3545: [ONTAK2010]Peaks Time Limit: 10 Sec  Memory Limit: 128 MB Description 在Bytemountains有N座山峰,每座山峰 ...

随机推荐

  1. 项目Beta冲刺Day4

    项目进展 李明皇 今天解决的进度 因服务器端未完成登录态维护,故无法进行前后端联动. 明天安排 前后端联动调试 林翔 今天解决的进度 因上课和实验室事务未完成登录态维护 明天安排 完成登录态维护 孙敏 ...

  2. MySql数据库的常用命令

    1.连接Mysql 连接本地的mysql数据库 :   mysql -u root -p    (回车之后会提示输入密码) 连接远程主机的mysql数据库 : 假设远程主机的IP为:110.110.1 ...

  3. Hibernate之SQL查询

    Hibernate支持使用原生的SQL语句进行查询.使用原生的SQL的好处是:可以利用某些数据库的特性(不同的数据库SQL 语法会有所差异), 将原有的使用JDBC作为持久层技术的应用 ,迁移到使用H ...

  4. 关于Android 7.0(API24)相机的问题汇总

    在开发Android项目的时候,我们会用到相机,有些时候只是开发一个普通的扫码,仅仅赋予一下 权限 就好了,但是有些时候是需要拍照和从相册中获取照片的.我们在Android 5.0以及5.0之前调用相 ...

  5. JAVA_SE基础——29.构造函数

    黑马程序员入学Blog... jvm创建Java对象时候需要调用构造器,默认是不带参数的.在构造器中,你可以让jvm帮你初始化一些参数或者执行一系列的动作. 它是对象创建中执行的函数,及第一个被执行的 ...

  6. Windows Powershell脚本执行

    在cmd下执行powershell进入shell模式: 变量定义:$i = 10 $a = ifconfig | findstr "192" Windows下的命令都可以执行如: ...

  7. Mybatis和Hibernate本质区别和应用场景

    Hibernate:是一个标准ORM(对象关系映射)框架.入门门槛较高,不需要程序员写sql语句,sql语句自动生成,对sql语句优化.修改比较困难 应用场景:适用于需求变化不多的中小型项目,比如后台 ...

  8. java获取本类路径

    (1).Test.class.getResource("") 得到的是当前类FileTest.class文件的URI目录.不包括自己! (2).Test.class.getReso ...

  9. 模板引擎Jade详解

    有用的符号: | 竖杠后的字符会被原样输出 · 点表示下一级的所有字符都会被原样输出,不再被识别.(就是|的升级版,实现批量) include 表示引用外部文件 短杠说明后面跟着的字符只是一段代码(与 ...

  10. python基础-循环

    循环 循环 要计算1+2+3,我们可以直接写表达式: >>> 1 + 2 + 3 6 要计算1+2+3+...+10,勉强也能写出来. 但是,要计算1+2+3+...+10000,直 ...