●赘述题目

10*10的房间内,有竖着的一些墙(不超过18个)。问从点(0,5)到(10,5)的最短路。

按照输入样例,输入的连续5个数,x,y1,y2,y3,y4,表示(x,0--y1),(x,y2--y3),(x,y4--10)是墙壁。

●题解

方法:建图(用到简单计算几何)+最短路

○记录下每个端点。

○包含起点,终点,以及每个墙的可以走的端点,如下图:

○然后枚举点,尝试两两组合连(线段)边,若该线不会撞在墙上,即不会与墙壁线段相交,就add_adge()。

效果图如下:

如何判断呢? 计算几何呗。我用的方法如下,须同时满足两个条件:

●代码

#include<cmath>
#include<cstdio>
#include<queue>
#include<cstring>
#include<iostream>
using namespace std;
const double eps=1e-8;
typedef pair<double,int> pii;
struct point{double x,y;}p[105];
struct seg{double x1,y1,x2,y2;}w[105];
struct vec{
double x,y;
double operator ^(const vec rtm) {return x*rtm.y-y*rtm.x;} //向量叉乘(模)
vec operator -(const vec rtm) {return (vec){x-rtm.x,y-rtm.y};}
}v1,v2,v3,v4,v5,v6,v7,v8;
struct edge{
int to; double co; int next;
}e[10005];
int head[105];
double d[105];
int n,dnt,snt,ent;
double dis(point a,point b) {return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));}
int sign(double a)
{
if(fabs(a)<eps) return 0;
return a>0?1:-1;
}
void add(int u,int v,double c)
{
e[ent]=(edge){v,c,head[u]};head[u]=ent++;
e[ent]=(edge){u,c,head[v]};head[v]=ent++;
}
void dijkstra()
{
for(int i=1;i<=dnt;i++) d[i]=1e7+9;
priority_queue<pii> q;
q.push((pii){0,1});d[1]=0;
while(!q.empty())
{
pii u=q.top();q.pop();
if(d[u.second]<u.first) continue;
for(int i=head[u.second];i!=-1;i=e[i].next)
{
int v=e[i].to;
if(d[v]>d[u.second]+e[i].co)
{
d[v]=d[u.second]+e[i].co;
q.push((pii){d[v],v});
}
}
}
}
int main()
{
p[++dnt]=(point){0,5}; p[++dnt]=(point){10,5};
while(1)
{
memset(head,-1,sizeof(head));
dnt=2;snt=0;ent=0;
scanf("%d",&n);
if(n==-1) break;
double x,y1,y2,y3,y4;
for(int i=1;i<=n;i++)
{
scanf("%f%f%f%f%f",&x,&y1,&y2,&y3,&y4);
p[++dnt]=(point){x,y1}; p[++dnt]=(point){x,y2}; p[++dnt]=(point){x,y3}; p[++dnt]=(point){x,y4};
w[++snt]=(seg){x,0,x,y1}; w[++snt]=(seg){x,y2,x,y3}; w[++snt]=(seg){x,y4,x,10};
}
bool fg;
for(int i=1;i<dnt;i++) for(int j=i+1;j<=dnt;j++)
{
fg=1;
for(int k=1;k<=snt;k++)
{
v1=(vec){p[i].x-w[k].x1,p[i].y-w[k].y1};
v2=(vec){p[i].x-w[k].x2,p[i].y-w[k].y2};
v3=(vec){p[j].x-w[k].x1,p[j].y-w[k].y1};
v4=(vec){p[j].x-w[k].x2,p[j].y-w[k].y2}; v5=(vec){0,0}-v1;
v6=(vec){0,0}-v3;
v7=(vec){0,0}-v2;
v8=(vec){0,0}-v4;
if(sign((v1^v2)*(v3^v4))<0&&(sign(v5^v6)*(v7^v8))<0) {fg=0;break;}
}
if(fg) add(i,j,dis(p[i],p[j]));
}
dijkstra();
printf("%.2f\n",d[2]);
}
return 0;
}

●POJ 1556 The Doors(简单计算几何+最短路)的更多相关文章

  1. [日常摸鱼]UVA393 The Doors 简单计算几何+最短路

    The  Boy Next   Doors 题意:给定一个固定大小的房间($x,y$的范围都是$[0,10]$),有$n$个墙壁作为障碍(都与横坐标轴垂直),每个墙壁都有两扇门分别用四个点来描述,起点 ...

  2. POJ 1556 The Doors --几何,最短路

    题意: 给一个正方形,从左边界的中点走到右边界的中点,中间有一些墙,问最短的距离是多少. 解法: 将起点,终点和所有墙的接触到空地的点存下来,然后两两之间如果没有线段(墙)阻隔,就建边,最后跑一个最短 ...

  3. POJ 1556 The Doors(线段交+最短路)

    #include <iostream> #include <stdio.h> #include <string.h> #include <algorithm& ...

  4. POJ 1556 - The Doors 线段相交不含端点

    POJ 1556 - The Doors题意:    在 10x10 的空间里有很多垂直的墙,不能穿墙,问你从(0,5) 到 (10,5)的最短距离是多少.    分析:        要么直达,要么 ...

  5. POJ 1556 The Doors 线段交 dijkstra

    LINK 题意:在$10*10$的几何平面内,给出n条垂直x轴的线,且在线上开了两个口,起点为$(0, 5)$,终点为$(10, 5)$,问起点到终点不与其他线段相交的情况下的最小距离. 思路:将每个 ...

  6. 简单几何(线段相交+最短路) POJ 1556 The Doors

    题目传送门 题意:从(0, 5)走到(10, 5),中间有一些门,走的路是直线,问最短的距离 分析:关键是建图,可以保存所有的点,两点连通的条件是线段和中间的线段都不相交,建立有向图,然后用Dijks ...

  7. POJ 1556 The Doors(计算几何+最短路)

    这题就是,处理出没两个点.假设能够到达,就连一条边,推断可不能够到达,利用线段相交去推断就可以.最后求个最短路就可以 代码: #include <cstdio> #include < ...

  8. POJ 1556 - The Doors - [平面几何+建图spfa最短路]

    题目链接:http://poj.org/problem?id=1556 Time Limit: 1000MS Memory Limit: 10000K Description You are to f ...

  9. POJ 1556 The Doors【最短路+线段相交】

    思路:暴力判断每个点连成的线段是否被墙挡住,构建图.求最短路. 思路很简单,但是实现比较复杂,模版一定要可靠. #include<stdio.h> #include<string.h ...

随机推荐

  1. Alpha集合

    项目名称:城市安全风险管控系统 小组成员: 张梨贤.林静.周静平.黄腾飞 Alpha冲刺随笔 Alpha冲刺Day1 Alpha冲刺Day2 Alpha冲刺Day3 Alpha冲刺Day4 Alpha ...

  2. 乘法表(24.9.2017) (WARNING!!!!!!!!!!!)

    #include "stdio.h" main() { int i,j,result; printf("\n"); ;i<;i++) { ;j<;j ...

  3. Linux进程管理之task_struct结构体

    进程是处于执行期的程序以及它所管理的资源(如打开的文件.挂起的信号.进程状态.地址空间等等)的总称.注意,程序并不是进程,实际上两个或多个进程不仅有可能执行同一程序,而且还有可能共享地址空间等资源. ...

  4. HTML5的新的结构元素介绍

    HTML5的新的结构元素介绍 一.HTML5与HTML4的区别 1. 取消了一些过时的HTML4的标签 其中包括纯粹显示效果的标记,如<font>和<center>,它们已经被 ...

  5. 一个CSS简单入门网站

    讲的知识简单明了,很实用: http://zh.learnlayout.com/

  6. C#系统服务安装

    转载 http://blog.csdn.net/vvhesj/article/details/8349615 1.1创建WindowsService项目 导入需要的引用比如System.configu ...

  7. c++ 中lambda

    C++ 11中的Lambda表达式用于定义并创建匿名的函数对象,以简化编程工作. 1.Lambda表达式完整的声明格式如下: [capture list] (params list) mutable  ...

  8. jsp文件调用本地文件的方法(Tomcat server.xml 设置虚拟目录)

    JSP文件: <video id="my-video" class="video-js" controls preload="auto" ...

  9. 虚拟机Vmware成功安装Ubuntu Server 16.04中文版

    最近想在Linux下学习Python的爬虫开发技术,经过认真考虑优先选择在在Ubuntu环境下进行学习Python的开发,虽然Ubuntu Server 16.04 LTS版本已经集成了Python ...

  10. Window7下安装Jmeter

    解压Jmeter,存放位置为D:\apache-jmeter-2.11 用户变量——>新建变量名JMETER_HOME,变量值为存放目录 系统变量——>添加;%JMETER_HOME%/l ...