BZOJ_2595_[Wc2008]游览计划_斯坦纳树

题意:

分析:

斯坦纳树裸题,有几个需要注意的地方

给出矩阵,不用自己建图,但枚举子集转移时会算两遍,需要减去当前点的权值

方案记录比较麻烦,两边的转移都需要记录,最后dfs找方案会比较容易理解

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
using namespace std;
#define N 110
#define LL long long
priority_queue <pair <int,int> >q;
LL map[11][11],dis[1<<10][N];
int chosex[1<<10][N],chosey[1<<10][N];
bool change[1<<10][N];
int flg[11][11];
int n,m;
int tx[]={1,-1,0,0};
int ty[]={0,0,1,-1};
int id[N][N],a[N],xx[N],yy[N],cnt,vis[1<<10][N];
void dfs(int sta,int p){
if(!dis[sta][p])return ;
flg[xx[p]][yy[p]]=1;
if(change[sta][p]){
dfs(chosex[sta][p],p);
dfs(chosey[sta][p],p);
}else dfs(sta,id[chosex[sta][p]][chosey[sta][p]]);
}
int main(){
scanf("%d%d",&n,&m);
int i,j,tot=0,k,x;
for(i=1;i<=n;i++){
for(j=1;j<=m;j++){
scanf("%lld",&map[i][j]);
id[i][j]=++tot;
xx[tot]=i;yy[tot]=j;
if(!map[i][j]){
a[++cnt]=tot;
}
}
}
int mask=(1<<cnt)-1;
memset(dis,0x3f,sizeof(dis));
for(i=1;i<=cnt;i++){
dis[1<<i-1][a[i]]=0;
}
for(j=1;j<=mask;j++){
for(i=1;i<=n*m;i++){
for(k=j&(j-1);k;k=j&(k-1)){
if(dis[j][i]>dis[k][i]+dis[j-k][i]-map[xx[i]][yy[i]]){
dis[j][i]=dis[k][i]+dis[j-k][i]-map[xx[i]][yy[i]];
chosex[j][i]=k,chosey[j][i]=j-k;
change[j][i]=1;
}
// dis[j][i]=min(dis[j][i],dis[k][i]+dis[j-k][i]-map[xx[i]][yy[i]]);
}
}
for(i=1;i<=n*m;i++){
q.push(make_pair(-dis[j][i],i));
}
while(!q.empty()){
x=q.top().second;q.pop();
if(vis[j][x])continue;
vis[j][x]=1;
int nx=xx[x],ny=yy[x];
for(i=0;i<4;i++){
int dx=nx+tx[i],dy=ny+ty[i];
if(dx>=1&&dx<=n&&dy>=1&&dy<=m){
if(dis[j][id[dx][dy]]>dis[j][x]+map[dx][dy]){
dis[j][id[dx][dy]]=dis[j][x]+map[dx][dy];
chosex[j][id[dx][dy]]=nx;
chosey[j][id[dx][dy]]=ny;
change[j][id[dx][dy]]=0;
q.push(make_pair(-dis[j][id[dx][dy]],id[dx][dy]));
}
}
}
}
}
LL ans=1ll<<60;
int end;
for(i=1;i<=n*m;i++){
if(ans>dis[mask][i]){
ans=dis[mask][i];
end=i;
}
// ans=min(ans,dis[mask][i]);
}
dfs(mask,end);
printf("%lld\n",ans);
for(i=1;i<=n;i++){
for(j=1;j<=m;j++){
if(!map[i][j]){
printf("x");
}else if(flg[i][j]){
printf("o");
}else printf("_");
}
puts("");
}
}

BZOJ_2595_[Wc2008]游览计划_斯坦纳树的更多相关文章

  1. 【BZOJ2595_洛谷4294】[WC2008]游览计划(斯坦纳树_状压DP)

    上个月写的题qwq--突然想写篇博客 题目: 洛谷4294 分析: 斯坦纳树模板题. 简单来说,斯坦纳树问题就是给定一张有边权(或点权)的无向图,要求选若干条边使图中一些选定的点连通(可以经过其他点) ...

  2. BZOJ2595 Wc2008 游览计划 【斯坦纳树】【状压DP】*

    BZOJ2595 Wc2008 游览计划 Description Input 第一行有两个整数,N和 M,描述方块的数目. 接下来 N行, 每行有 M 个非负整数, 如果该整数为 0, 则该方块为一个 ...

  3. bzoj 2595 [Wc2008]游览计划(斯坦纳树)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2595 [题意] 给定N*M的长方形,选最少权值和的格子使得要求的K个点连通. [科普] ...

  4. BZOJ2595 WC2008游览计划(斯坦纳树)

    斯坦纳树板子题. 考虑状压dp,设f[i][j][S]表示当前在点(i,j)考虑转移,其所在的联通块包含的关键点集(至少)为S的答案. 转移时首先枚举子集,有f[i][j][S]=min{f[i][j ...

  5. [WC2008]游览计划(斯坦纳树)

    [Luogu4294] 题解 : 斯坦纳树 \(dp[i][j]\) 表示以\(i\)号节点为根,当前状态为\(j\)(与\(i\)连通的点为\(1\)) 当根\(i\)不改变时状态转移方程是: \( ...

  6. BZOJ.2595.[WC2008]游览计划(DP 斯坦纳树)

    题目链接 f[i][s]表示以i为根节点,当前关键点的连通状态为s(每个点是否已与i连通)时的最优解.i是枚举得到的根节点,有了根节点就容易DP了. 那么i为根节点时,其状态s的更新为 \(f[i][ ...

  7. [WC2008]游览计划 「斯坦那树模板」

    斯坦那树 百度释义 斯坦纳树问题是组合优化问题,与最小生成树相似,是最短网络的一种.最小生成树是在给定的点集和边中寻求最短网络使所有点连通.而最小斯坦纳树允许在给定点外增加额外的点,使生成的最短网络开 ...

  8. BZOJ_4006_[JLOI2015]管道连接_斯坦纳树

    BZOJ_4006_[JLOI2015]管道连接_斯坦纳树 题意: 小铭铭最近进入了某情报部门,该部门正在被如何建立安全的通道连接困扰. 该部门有 n 个情报站,用 1 到 n 的整数编号.给出 m ...

  9. WC 2008 观光计划(斯坦纳树)

    题意 https://www.lydsy.com/JudgeOnline/problem.php?id=2595 思路 是一道比较裸的斯坦纳树呢- 题意等价于选出包含一些点的最小生成树,这就是斯坦纳树 ...

随机推荐

  1. section元素与div、article元素的区别

    section元素是对网站或应用程序中页面上的内容进行分块,一个section元素通常有标题和内容组成.但section元素并非一个普通的容器元素,当一个容器需要直接定义样式或通过脚本定义行为时,推荐 ...

  2. 超精简易用cocoaPods的安装和使用

    cocoaPods 安装和使用 第一步:替换ruby源 $ gem sources -l                                查看当前ruby的源 $ gem sources ...

  3. MariaDB/MySQL用户和权限管理

    本文目录: 1.权限验证 1.1 权限表 1.2 图解认证和权限分配的两个阶段 1.3 权限生效时机 2.用户管理 2.1 创建用户 2.2 create user和alter user 2.3 记录 ...

  4. Construct Binary Tree from Preorder and Inorder Traversal(根据前序中序构建二叉树)

    根据前序中序构建二叉树. 1 / \ 2 3 / \ / \ 4 5 6 7对于上图的树来说, index: 0 1 2 3 4 5 6 先序遍历为: 6 3 7为了清晰表示,我给节点上了颜色,红色是 ...

  5. DB2常用函数

    1.char函数  char(current date,ISO)--转换成yyyy-mm-dd  char(current date,USA)--转换成mm/dd/yyyy  char(current ...

  6. 多重影分身——C#中多线程的使用三(调用方法和传参)

    对Thread: 1.使用ThreadStart static void Main(string[] args) { Thread th1=new Thread(new ThreadStart(Say ...

  7. Find、FindAll、Where的区别

    Find.FindAll是一个List<T>的方法,返回一个new List<T>包括符合条件的数据 Where是一个linq方法,适用于任意继承了IEnumerable接口的 ...

  8. [转]在Windows下编译ffmpeg完全手册

    本文的内容几乎全部来自于FFmpeg on Windows,但是由于国内的网络封锁,很难访问这个域名下的内容,因此我一方面按照我自己的理解和实践做了翻译,另一方面也是为了能提供一个方便的参考方法. 注 ...

  9. Niop2017初赛滚粗记

    初赛踢蹬滚粗 TOT (╯°Д°)╯︵┻━┻ ヽ(`Д´)ノ︵ ┻━┻ ┻━┻ 排序啊排序,净是排序,自打我学了C++就再没学过排序!!wtf! (╯°Д°)╯︵ /(.□ . )我tm怎么知道建国那 ...

  10. 关于JAVA中异常处理的简单阐释.

    ---恢复内容开始--- 这是我的一篇要在博客园发布的随笔,主要是简单的概括一下我本次所学的关于异常处理的知识.有讲的不妥当的地方,或者有需要补充的,还请各位高人给指点,共同学习,虚心求学.谢谢啦~ ...