hdu 1207 四柱汉诺塔
递推,汉诺塔I的变形。
这题真心没想到正确解法,越想越迷糊。这题看了别人题解过得,以后还是自己多想想,脚步太快并非好事。
贴上分析:
分析:设F[n]为所求的最小步数,显然,当n=1时,F[n]=1;当n=2时,F[n]=3;如同经典汉诺塔一样,我们将移完盘子的任务分为三步:
AC代码:
- #include<cstdio>
- #include<algorithm>
- using namespace std;
- typedef unsigned long long LL; //重点注意无符号
- const int maxn=65;
- const int INF=1<<30;
- LL ans[maxn];
- LL power(LL a,LL n){ //快速幂
- LL w=1;
- while(n>0){
- if(n%2==1)
- w*=a;
- n/=2;
- a*=a;
- }
- return w;
- }
- void solve(){
- ans[0]=0;
- ans[1]=1;
- ans[2]=3;
- for(int i=3;i<=64;++i){
- ans[i]=INF;
- for(int j=1;j<i;++j)
- ans[i]=min(ans[i],ans[j]*2+power(2,i-j)-1);
- }
- }
- int main(){
- int n;
- solve();
- while(scanf("%d",&n)==1){
- printf("%lld\n",ans[n]);
- }
- return 0;
- }
如有不当之处欢迎指出!
hdu 1207 四柱汉诺塔的更多相关文章
- 4柱汉诺塔(zz)
多柱汉诺塔可以用Frame–Stewart算法来解决. The Frame–Stewart algorithm, giving a presumably optimal solution for fo ...
- 多柱汉诺塔问题“通解”——c++
多柱汉诺塔问题 绪言 有位同学看到了我的初赛模拟卷上有一道关于汉诺塔的数学题.大概就是要求4柱20盘的最小移动次数. 他的数学很不错,找到了应该怎样推. 如果要把n个盘子移到另一个柱子上,步骤如下: ...
- The Towers of Hanoi Revisited---(多柱汉诺塔)
Description You all must know the puzzle named "The Towers of Hanoi". The puzzle has three ...
- HDU 2064 (递推) 汉诺塔III
将柱子从左到右依次编号为A.B.C 设将n个盘子从一端移动到另一端的最少步数为f(n) 则f(n)和f(n-1)的递推关系为:f(n) = 3 × f(n-1) + 2 初始状态A柱子上面有n个盘子, ...
- 四柱加强版汉诺塔HanoiTower----是甜蜜还是烦恼
我想很多人第一次学习递归的时候,老师或者书本上可能会举汉诺塔的例子. 但是今天,我们讨论的重点不是简单的汉诺塔算法,而是三柱汉诺塔的延伸.先来看看经典的三柱汉诺塔. 一.三柱汉诺塔(Hanoi_Thr ...
- HDU汉诺塔系列
这几天刷了杭电的汉诺塔一套,来写写题解. HDU1207 汉诺塔II HDU1995 汉诺塔V HDU1996 汉诺塔VI HDU1997 汉诺塔VII HDU2064 汉诺塔III HDU2077 ...
- 汉诺塔的问题:4个柱子,如果塔的个数变位a,b,c,d四个,现要将n个圆盘从a全部移到d,移动规则不变
四柱汉诺塔问题的求解程序.解题思路:如a,b,c,d四柱. 要把a柱第n个盘移到目标柱子(d柱),先把上层 分两为两部份,上半部份移到b柱,下半部分移到c柱,再把第n盘移到 目标柱子,然后,c柱盘子再 ...
- [递推]B. 【例题2】奇怪汉诺塔
B . [ 例 题 2 ] 奇 怪 汉 诺 塔 B. [例题2]奇怪汉诺塔 B.[例题2]奇怪汉诺塔 题目描述 汉诺塔问题,条件如下: 这里有 A A A. B B B. C C C 和 D D D ...
- C语言数据结构----递归的应用(斐波拉契数列、汉诺塔、strlen的递归算法)
本节主要说了递归的设计和算法实现,以及递归的基本例程斐波拉契数列.strlen的递归解法.汉诺塔和全排列递归算法. 一.递归的设计和实现 1.递归从实质上是一种数学的解决问题的思维,是一种分而治之的思 ...
随机推荐
- Tomcat--startup.bat文件
Tomcat--startup.bat文件 如何启动tomcat,如何关闭tomcat等常规操作,我们应该都很清楚了,但是实际中我们经常会遇到一些恶心的情景,比如说正在我们撸码撸的很高兴的时候,ecl ...
- linkin大话面向对象--java关键字
java中的关键字有以下几个,他们不能作任何其它的用途. 发现没,java中的关键字全是小写,java是严格区分大小写的. abstract default null synchronized ...
- android Fragment的数据传递
Bundle传递参数 Fragment1 fragment1 = new Fragment1();Bundle bundle = new Bundle();bundle.putString(" ...
- 我的踩坑之旅-跨域问题引发bug
场景: 由于业务原因需要在请求中添加一个信息表明请求的source,经过一轮方案的评审,大家共同决定把这source信息存放在消息header中.前端小伙伴听完之后心里暗自偷笑:就一行的代码的事,请求 ...
- ( ! ) Parse error: syntax error, unexpected '' (T_ENCAPSED_AND_WHITESPACE), expecting identifier (T_STRING) or variable (T_VARIABLE) or number (T_NUM_STRING) in D:\demo\code\yolo\index\index.php on li
sql语句为:$sql="select count(*) from com where a_id=$v['id']"; 出现以下错误: 原因: 变量没有用花括号引起来 改为: $ ...
- NIO笔记---上
小弟前端时间由于开发个管理系统导致断更了近20天!!马上就要春招了,学习了一下NIO,将笔记记录下,希望和我一样的18届毕业生都能找到满意的公司!! 本文记录了NIO与IO的区别,缓冲区的数据存取,直 ...
- CSS-——水平居中设置
1.行内元素水平居中方法:如果被设置元素为文本.图片等行内元素时,水平居中是通过给父元素设置 text-align:center 来实现的. 2.块状元素--定块状元素水平居中方法: (1)定宽块状元 ...
- [Android] Toast问题深度剖析(一)
欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 题记 Toast 作为 Android 系统中最常用的类之一,由于其方便的api设计和简洁的交互体验,被我们所广泛采用.但是,伴随着我们开发的深 ...
- python--关于赋值与深浅拷贝的认识
作为一个自学python的小白,平时用到深浅拷贝的机会很少,因此对其也是一知半解.但是,作为一个立志成为后端工程狮的男人,眼里揉不了沙子,于是专门花时间补了补课,在此记录一下学习心得. 在讲深浅 ...
- 看雪.TSRC 2017CTF秋季赛第三题
看雪.TSRC 2017CTF秋季赛第三题 wp 这是一道很简单的题,反调试的坑略多.这道题采用了很多常用的反调试手段,比如调用IsDebuggerPresent.进程名检查等等.另外也有利用SEH的 ...