线段树 SP1043 GSS1 - Can you answer these queries I
SP1043 GSS1 - Can you answer these queries I
题目描述
给出了序列A[1],A[2],…,A[N]。 (a[i]≤15007,1≤N≤50000)。查询定义如下: 查询(x,y)=max{a[i]+a[i+1]+...+a[j];x≤i≤j≤y}。 给定M个查询,程序必须输出这些查询的结果。
输入输出格式
输入格式:
- 输入文件的第一行包含整数N。
- 在第二行,N个数字跟随。
- 第三行包含整数M。
- M行跟在后面,其中第1行包含两个数字xi和yi。
输出格式:
您的程序应该输出M查询的结果,每一行一个查询。
不带修改的维护最大子段和,挺裸的,维护四个量就行了。具体参考小白逛公园https://www.cnblogs.com/wangxiaodai/p/9744081.html
code:
#include<iostream>
#include<cstdio>
#define ls(o) o<<1
#define rs(o) o<<1|1
using namespace std;
const int wx=100017;
inline int read(){
int sum=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=(sum<<1)+(sum<<3)+ch-'0';ch=getchar();}
return sum*f;
}
struct val_tree{
int l,r,sum,lsum,rsum,tot;
#define sum(o) t[o].sum
#define lsum(o) t[o].lsum
#define rsum(o) t[o].rsum
#define tot(o) t[o].tot
}t[wx*4];
int n,m;
int a[wx];
void up(int o){
tot(o)=tot(ls(o))+tot(rs(o));
lsum(o)=max(lsum(ls(o)),tot(ls(o))+lsum(rs(o)));
rsum(o)=max(rsum(rs(o)),tot(rs(o))+rsum(ls(o)));
sum(o)=max(sum(ls(o)),max(sum(rs(o)),rsum(ls(o))+lsum(rs(o))));
}
void build(int o,int l,int r){
t[o].l=l;t[o].r=r;
if(l==r){sum(o)=tot(o)=lsum(o)=rsum(o)=a[l];return;}
int mid=t[o].l+t[o].r>>1;
if(l<=mid)build(ls(o),l,mid);
if(r>mid)build(rs(o),mid+1,r);
up(o);
}
val_tree query(int o,int l,int r){
if(l<=t[o].l&&t[o].r<=r){
return t[o];
}
int mid=t[o].l+t[o].r>>1;
val_tree tmp,tmp1,tmp2;
if(r<=mid)return query(ls(o),l,r);
if(l>mid)return query(rs(o),l,r);
tmp1=query(ls(o),l,r);
tmp2=query(rs(o),l,r);
tmp.tot=tmp1.tot+tmp2.tot;
tmp.lsum=max(tmp1.lsum,tmp1.tot+tmp2.lsum);
tmp.rsum=max(tmp2.rsum,tmp2.tot+tmp1.rsum);
tmp.sum=max(max(tmp1.sum,tmp2.sum),tmp1.rsum+tmp2.lsum);
return tmp;
}
int main(){
n=read();
for(int i=1;i<=n;i++)a[i]=read();
build(1,1,n);
m=read();
for(int i=1;i<=m;i++){
int x,y;
x=read();y=read();
printf("%d\n",query(1,x,y).sum);
}
return 0;
}
线段树 SP1043 GSS1 - Can you answer these queries I的更多相关文章
- SP1043 GSS1 - Can you answer these queries I 线段树
问题描述 LG-SP1043 题解 GSS 系列第一题. \(q\) 个询问,求 \([x,y]\) 的最大字段和. 线段树,维护 \([x,y]\) 的 \(lmax,rmax,sum,val\) ...
- SP1043 GSS1 - Can you answer these queries I(猫树)
给出了序列A[1],A[2],…,A[N]. (a[i]≤15007,1≤N≤50000).查询定义如下: 查询(x,y)=max{a[i]+a[i+1]+...+a[j]:x≤i≤j≤y}. 给定M ...
- [SP1043] GSS1 - Can you answer these queries I
传送门:>Here< 题意:求区间最大子段和 $N \leq 50000$ 包括多组询问(不需要支持修改) 解题思路 线段树的一道好题 我们可以考虑,如果一组数据全部都是正数,那么问题等同 ...
- 线段树 SP1716 GSS3 - Can you answer these queries III
SP1716 GSS3 - Can you answer these queries III 题意翻译 n 个数,q 次操作 操作0 x y把A_xAx 修改为yy 操作1 l r询问区间[l, r] ...
- 线段树 SP2713 GSS4 - Can you answer these queries IV暨 【洛谷P4145】 上帝造题的七分钟2 / 花神游历各国
SP2713 GSS4 - Can you answer these queries IV 「题意」: n 个数,每个数在\(10^{18}\) 范围内. 现在有「两种」操作 0 x y把区间\([x ...
- SP1043 GSS1 - Can you answer these queries I(线段树,区间最大子段和(静态))
题目描述 给出了序列A[1],A[2],…,A[N]. (a[i]≤15007,1≤N≤50000).查询定义如下: 查询(x,y)=max{a[i]+a[i+1]+...+a[j]:x≤i≤j≤y} ...
- [题解] SPOJ GSS1 - Can you answer these queries I
[题解] SPOJ GSS1 - Can you answer these queries I · 题目大意 要求维护一段长度为 \(n\) 的静态序列的区间最大子段和. 有 \(m\) 次询问,每次 ...
- 线段树【SP1043】GSS1 - Can you answer these queries I
Description 给出了序列\(A_1,A_2,-,A_n\). \(a_i \leq 15007,1 \leq n \leq 50000\).查询定义如下: 查询\((x,y)=max{a_i ...
- GSS1 - Can you answer these queries I(线段树)
前言 线段树菜鸡报告,stO ZCDHJ Orz,GSS基本上都切完了. Solution 考虑一下用线段树维护一段区间左边连续的Max,右边的连续Max,中间的连续Max还有总和,发现这些东西可以相 ...
随机推荐
- Android 4学习(7):用户界面 - 基础
参考<Professional Android 4 Development> Android UI基本元素 下面这些概念是Android UI设计的基础,深入学习和理解它们是Android ...
- 包学会之浅入浅出Vue.js:开学篇
2016年,乃至接下来整个2017年,如果你要问前端技术框架什么最火,那无疑就是前端三巨头:React.Angular.Vue.没错,什么jQuery,seaJs,gulp等都逐渐脱离了热点.面试的时 ...
- 12-21C#电脑蓝屏效果(可以恶搞整人哦)、输入输出流(StreamReader/streamWriter)
一.winform电脑蓝屏效果 第一种方法:基本操作: 第一步:创建一个新的C#窗体“Form1”: 第二步:在设计窗口中,更改其属性: 1)text属性:将form1的text属性中的文字取消掉,然 ...
- 【总结整理】行内标签span设置position:absolute/float属性可以设置宽度与高度
postion:absolute 跳出文本流,不是行内元素,设置宽高有效,我的理解. 引用下曹刘阳写的<编写高质量代码-web前端开发修炼之道>一书中看到的一句话:position:abs ...
- vue 跨域访问http
axios用法: npm install axios --save-dev 2.导入: import axios from 'axios'; 3.使用($(form)需要先按装jQuery) axio ...
- 算法Sedgewick第四版-第1章基础-2.1Elementary Sortss-006归并排序(Mergesort)
一. 1.特点 (1)merge-sort : to sort an array, divide it into two halves, sort the two halves (recursivel ...
- C语言-郝斌笔记-004判断是否为回文数
判断是否为回文数 # include <stdio.h> int main(void) { int val; //存放待判断的数字 int m; ; printf("请输入您需要 ...
- 每个程序中只有一个public类,主类?
import java.io.*; public class GameSaverTest { public static void main(String[] args){ //创建人物 GameCh ...
- ZROI2018提高day1t1
传送门 分析 在考场上我通过画图发现了对于n个点肯定用一个六边形围起来最优(假装四边形是特殊的六边形),我们发现可以将这个六边形分成两个梯形(梯形的高可以为0),然后我们便枚举两个梯形共同的底边和它们 ...
- vue 之 模板字符串
传统的JavaScript语言,输出模板通常是这样的写的. $('#result').append( 'There are <b>' + basket.count + '</b> ...