传送门

推式子(快哭了……)$$s^2*m^2=\sum _{i=1}^m (x_i-\bar{x})^2$$

$$s^2*m^2=m*\sum _{i=1}^m x_i^2-2*sum_n\sum _{i=1}^m x_i+sum_n^2$$

$$s^2*m^2=m*\sum _{i=1}^m x_i^2+(sum_n-\sum _{i=1}^m x_i)^2-(\sum _{i=1}^m x_i)^2$$

然后因为$sum_n$和$\sum _{i=1}^m x_i$两项是定值,且值相等,所以$$s^2*m^2=m*\sum _{i=1}^m x_i^2-(\sum _{i=1}^m x_i)^2$$

我们发现$(\sum _{i=1}^m x_i)^2$是一个定值,那么我们的目的就是让$\sum _{i=1}^m x_i^2$最小

总算扯到dp上了不容易啊……

我们设$dp[i][l]$表示前$i$条路$l$天走,最小的\sum _{a=1}^i x_a^2是多少,那么有如下的状态转移方程$$dp[i][l]=min\{dp[j][l-1]+(sum[i]-sum[j])^2\}$$

然后考虑斜率优化(以下省略$l$这一维)

假设$j$比$k$更优,则有$$dp[j]+(sum[i]-sum[j])^2<dp[k]+(sum[i]-sum[k])^2$$

展开,移项$$dp[j]+sum[j]^2-dp[k]-sum[k]^2<2*sum[i]*sum[j]-2*sum[i]*sum[k]$$

$$\frac{dp[j]+sum[j]^2-dp[k]-sum[k]^2}{sum[j]-sum[k]}<2*sum[i]$$

然后就可以上斜率优化了

ps:注意当$l$为$0$的时候dp要都初始化为$sum[i]^2$

 //minamoto
#include<iostream>
#include<cstdio>
#define ll long long
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
const int N=;
ll sum[N],sp[N],dp[N];int n,m,h,t,q[N],r;
inline ll Y(int i){return sp[i]+sum[i]*sum[i];}
inline double slope(int j,int k){
return (Y(j)-Y(k))*1.0/(sum[j]-sum[k]);
}
int main(){
//freopen("testdata.in","r",stdin);
n=read(),m=read();
for(int i=;i<=n;++i)
sum[i]=read()+sum[i-],sp[i]=sum[i]*sum[i];
for(int a=;a<m;++a){
h=t=;q[]=a;
for(int i=a+;i<=n;++i){
while(h<t&&slope(q[h],q[h+])<*sum[i]) ++h;
dp[i]=sp[q[h]]+(sum[i]-sum[q[h]])*(sum[i]-sum[q[h]]);
while(h<t&&slope(q[t],q[t-])>slope(q[t-],i)) --t;q[++t]=i;
}
for(int i=;i<=n;++i) sp[i]=dp[i];
}
printf("%lld\n",-sum[n]*sum[n]+m*dp[n]);
return ;
}

洛谷P4072 [SDOI2016]征途(斜率优化)的更多相关文章

  1. 洛谷 P4072 [SDOI2016]征途 斜率优化DP

    洛谷 P4072 [SDOI2016]征途 斜率优化DP 题目描述 \(Pine\) 开始了从 \(S\) 地到 \(T\) 地的征途. 从\(S\)地到\(T\)地的路可以划分成 \(n\) 段,相 ...

  2. 洛谷P4072 [SDOI2016]征途(带权二分,斜率优化)

    洛谷题目传送门 一开始肯定要把题目要求的式子给写出来 我们知道方差的公式\(s^2=\frac{\sum\limits_{i=1}^{m}(x_i-\overline x)^2}{m}\) 题目要乘\ ...

  3. [洛谷P4072] SDOI2016 征途

    问题描述 Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m天外,每一天晚上Pine都必须在休息站过夜.所以,一段路 ...

  4. 洛谷4072 SDOI2016征途 (斜率优化+dp)

    首先根据题目中给的要求,推一下方差的柿子. \[v\times m^2 = m\times \sum x^2 - 2 \times sum \times sum +sum*sum \] 所以\(ans ...

  5. bzoj-4518 4518: [Sdoi2016]征途(斜率优化dp)

    题目链接: 4518: [Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地 ...

  6. BZOJ 4518: [Sdoi2016]征途 [斜率优化DP]

    4518: [Sdoi2016]征途 题意:\(n\le 3000\)个数分成m组,一组的和为一个数,求最小方差\(*m^2\) DP方程随便写\(f[i][j]=min\{f[k][j-1]+(s[ ...

  7. bzoj4518[Sdoi2016]征途 斜率优化dp

    4518: [Sdoi2016]征途 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1657  Solved: 915[Submit][Status] ...

  8. 【BZOJ4518】[Sdoi2016]征途 斜率优化

    [BZOJ4518][Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除 ...

  9. 【bzoj4518】[Sdoi2016]征途 斜率优化dp

    原文地址:http://www.cnblogs.com/GXZlegend/p/6812435.html 题目描述 Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界 ...

随机推荐

  1. Python使用类

    #coding:utf8 from selenium import webdriverfrom time import sleep class urlpage(object): #创建浏览器对象 de ...

  2. 2016第十三届浙江省赛 D - The Lucky Week

    D - The Lucky Week Edward, the headmaster of the Marjar University, is very busy every day and alway ...

  3. app中使用微信分享注意事项

    1.  在微信公众平台开通一个微信公众号,https://mp.weixin.qq.com 2.  将自己制作好的已签名的app安装到手机上 3.  下载微信开放平台获取应用签名的apk--- gen ...

  4. RandomForestClassifier(随机森林检测每个特征的重要性及每个样例属于哪个类的概率)

    #In the next recipe, we'll look at how to tune the random forest classifier. #Let's start by importi ...

  5. 《Android应用性能优化》 第4章 高效使用内存

      本地类型 大小 字节 boolean jboolean 8位(取决于VM) 1 byte jbyte 8位 1 char jchar 16位 2 short jshort 16位 2 int ji ...

  6. IP及端口号

    IP:代表一台机器 端口号:每一个程序都有一个端口号与之对应 一个域名对应一个虚拟主机

  7. onRetainNonConfigurationInstance方法状态保存

    onRetainNonConfigurationInstance方法作用于ONSAVEINSTANCE类似,但是能保存更多的信息,可以使用getLastNonConfigurationInstance ...

  8. dubbo-admin打包和zookper安装

    1 首选安装Zookper,下载zookeeper-3.5.3-beta版本,在这里我主要演示这个:下载地址:http://mirrors.hust.edu.cn/apache/zookeeper/ ...

  9. 使用Java创建JSON数据

    --------------siwuxie095                             工程名:TestCreateJSON 包名:com.siwuxie095.json 类名:Cr ...

  10. gitlab 添加ssh秘钥

    在创建新的ssh秘钥对之前,要先确认一下电脑中是否已经有了一对秘钥: Git Bash on Windows / GNU/Linux / macOS / PowerShell: cat ~/.ssh/ ...