Luogu P1463 [HAOI2007]反素数ant:数学 + dfs【反素数】
题目链接:https://www.luogu.org/problemnew/show/P1463
题意:
对于任何正整数x,其约数的个数记作g(x)。例如g(1)=1、g(6)=4。
如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数。例如,整数1,2,4,6等都是反质数。
现在给定一个数N,你能求出不超过N的最大的反质数么?
题解:
对于一个反素数p有两个结论:
若将p表示为 ∏(a[i]^k[i])的形式,其中a[i]为质因子,k[i]为指数。
(1)a[i]为从2开始的连续质数:2,3,5,7...
(2)k[i]为不升序列:k[1]>=k[2]>=...k[x]
证明:
结论1:
因为一个数x的因子个数 = ∏(k[i]+1)
所以当两个数的k[i]序列完全相同时,a[i]为从2开始的连续质数的那个数字更小。
所以另一个数一定不是反素数。
结论2:
若两个数的k[i]序列的元素相同(如{1,1,2}和{1,2,1}相同)
由结论1可知,两个数的a[i]序列完全相同(都是从2开始的连续质数)
所以k[i]为不升序列的那个数一定更小。
所以另一个数一定不是反素数。
那么就可以爆搜了。
在保证a[i]为从2开始连续质数,且k[i]不升的前提下,枚举n以内所有可能是反素数的数。
在枚举出的所有数中,答案为因子个数最多的那个数。
若有因子相同的多个数,则选最小的那个数。
AC Code:
#include <iostream>
#include <stdio.h>
#include <string.h>
#define INF 1000000000 using namespace std; const int p[]={,,,,,,,,,,,,,,,,}; long long n;
long long ans=;
long long now=; void dfs(int x,int lst,long long tot,long long v)
{
if(tot>now || (tot==now && v<ans)) ans=v,now=tot;
int cnt=;
while(v*p[x]<=n && cnt<lst)
{
v*=p[x]; cnt++;
dfs(x+,cnt,tot*(cnt+),v);
}
} int main()
{
cin>>n;
dfs(,INF,,);
cout<<ans<<endl;
}
Luogu P1463 [HAOI2007]反素数ant:数学 + dfs【反素数】的更多相关文章
- BZOJ 1053 - 反素数ant - [数论+DFS][HAOI2007]
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=1053 题解: 可以证明,$1 \sim N$ 中最大的反质数,就是 $1 \sim N$ ...
- 1053. [HAOI2007]反素数ant【DFS+结论】
Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0<i<x ,则称x为反质数.例如,整数 ...
- [BZOJ1053][SDOI2005]反素数ant 数学
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1053 假设这个最大的反素数为$x$,那么$1<p<x$中数的因子数都没有$x$ ...
- [luogu]P1463 [SDOI2005]反素数ant[dfs][数学][数论]
[luogu]P1463 [SDOI2005]反素数ant ——!x^n+y^n=z^n 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足: ...
- Luogu P1463 [POI2002][HAOI2007]反素数【数论/dfs】By cellur925
题目传送门 题目描述 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4. 如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数.例如,整数1 ...
- BZOJ 1053: [HAOI2007]反素数ant dfs
1053: [HAOI2007]反素数ant 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1053 Description 对于任何正整 ...
- 【BZOJ】【1053】【HAOI2007】反素数ant
搜索 经典搜索题目(其实是蒟蒻只会搜……vfleaking好像有更优秀的做法?) 枚举质数的幂,其实深度没多大……因为$2^32$就超过N了……而且质数不能取的太大,所以不会爆…… /******** ...
- bzoj1053: [HAOI2007]反素数ant
51nod有一道类似的题...我至今仍然不会写暴搜!!! #include<cstdio> #include<cstring> #include<iostream> ...
- 【BZOJ】1053: [HAOI2007]反素数ant
1053: [HAOI2007]反素数ant Description: g(x)表示x的约数个数,反素数:对于任意的i (i < x),均有g(i) < g(x),则x为反素数:现在输入不 ...
随机推荐
- Android内容提供者
一个应用中的数据库对别人是不会提供直接的访问的,而是提供接口给别人访问,但是一般应用开发的时候都是去获取别人的数据,而不是自己提供数据. 继承ContentProvider: 在Menifest中注册 ...
- 篇三、开发前知识补充:Android的长度单位和屏幕分辨率,这个也是转载~~
这篇文章有点早,不过很实用.单位的实用看最后的红色标注的部分. 屏幕分辨率基础 1.术语和概念 术语 说明 备注 Screen size(屏幕尺寸) 指的是手机实际的物理尺寸,比如常用的2.8英寸,3 ...
- Google Code Jam 2014 资格赛:Problem B. Cookie Clicker Alpha
Introduction Cookie Clicker is a Javascript game by Orteil, where players click on a picture of a gi ...
- Linux驱动platform
platform device<==> platform bus <==> platform driver 转自:platform设备驱动全透析 宋宝华 http://blog ...
- Linux中crontab下scp文件传输的两种方式
Linux下文件传输一般有两个命令scp.ftp(工具需要下载安装) 本文主要讲讲scp的文件传输脚本 1.scp ssh-keygen -t rsa免输入密码,传输 这里假设主机A 用来获到主机B的 ...
- HDU 2588 GCD && GCD问题总结
GCD(一) 题目: The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written ( ...
- MySQL的max()函数使用时遇到的小问题
通常我们获取某个表的某个字段最大值时可以使用max()函数. 使用场景举例: 获取某个表id的最大值:SQL: SELECT max(id) FROM table_name; SELECT max(` ...
- Office 365系列(二) -一些比较容易混淆的概念
上一篇比较简明地说了Office 365怎么注册使用,在继续探讨之前先讨论一些比较容易混淆的概念! 1. Office 365: 是微软云计划的一部分包括Exchange online, Lync ...
- 石子合并DP
DP Time Limit:3000MS Memory Limit:131072KB 64bit IO Format:%lld & %llu Submit Status Pra ...
- 使用PLSQL客户端导入导出数据库
本文主要介绍如何使用SQL Developer工具来实现备份数据库.数据导出等操作,然后实现Oracle对象导入数据等操作 1 导出数据库对象 在PL/SQL Developer的菜单Tools=&g ...