转载自网站:http://www.cnblogs.com/luo-peng/p/4785922.html

非局部均值去噪(NL-means)

 

非局部均值(NL-means)是近年来提出的一项新型的去噪技术。该方法充分利用了图像中的冗余信息,在去噪的同时能最大程度地保持图像的细节特征。基本思想是:当前像素的估计值由图像中与它具有相似邻域结构的像素加权平均得到。

理论上,该算法需要在整个图像范围内判断像素间的相似度,也就是说,每处理一个像素点时,都要计算它与图像中所有像素点间的相似度。但是考虑到效率问题,实现的时候,会设定两个固定大小的窗口:搜索窗口和邻域窗口。邻域窗口在搜索窗口中滑动,根据邻域间的相似性确定像素的权值。

下图是NL-means算法执行过程,大窗口是以目标像素为中心的搜索窗口,两个灰色小窗口分别是以为中心的邻域窗口。其中以为中心的邻域窗口在搜索窗口中滑动,通过计算两个邻域窗口间的相似程度为赋以权值 。

NL-means执行过程

设含噪声图像为,去噪后的图像为中像素点处的灰度值通过如下方式得到:

其中权值表示像素点间的相似度,它的值由以为中心的矩形邻域间的距离决定:

其中

为归一化系数,为平滑参数,控制高斯函数的衰减程度。越大高斯函数变化越平缓,去噪水平越高,但同时也会导致图像越模糊。越小,边缘细节成分保持得越多,但会残留过多的噪声点。的具体取值应当以图像中的噪声水平为依据。

程序:

close all;
clear all;
clc
I=double(imread('lena.tif'));
I=I+10*randn(size(I));
tic
O1=NLmeans(I,2,5,10);
toc
imshow([I,O1],[]);
function DenoisedImg=NLmeans(I,ds,Ds,h)
%I:含噪声图像
%ds:邻域窗口半径
%Ds:搜索窗口半径
%h:高斯函数平滑参数
%DenoisedImg:去噪图像
I=double(I);
[m,n]=size(I);
DenoisedImg=zeros(m,n);
PaddedImg = padarray(I,[ds,ds],'symmetric','both');
kernel=ones(2*ds+1,2*ds+1);
kernel=kernel./((2*ds+1)*(2*ds+1));
h2=h*h;
for i=1:m
for j=1:n
i1=i+ds;
j1=j+ds;
W1=PaddedImg(i1-ds:i1+ds,j1-ds:j1+ds);%邻域窗口1
wmax=0;
average=0;
sweight=0;
%%搜索窗口
rmin = max(i1-Ds,ds+1);
rmax = min(i1+Ds,m+ds);
smin = max(j1-Ds,ds+1);
smax = min(j1+Ds,n+ds);
for r=rmin:rmax
for s=smin:smax
if(r==i1&&s==j1)
continue;
end
W2=PaddedImg(r-ds:r+ds,s-ds:s+ds);%邻域窗口2
Dist2=sum(sum(kernel.*(W1-W2).*(W1-W2)));%邻域间距离
w=exp(-Dist2/h2);
if(w>wmax)
wmax=w;
end
sweight=sweight+w;
average=average+w*PaddedImg(r,s);
end
end
average=average+wmax*PaddedImg(i1,j1);%自身取最大权值
sweight=sweight+wmax;
DenoisedImg(i,j)=average/sweight;
end
end

结果:

可以看出,NL-means去噪效果的确很好。但是该算法的最大缺陷就是计算复杂度太高,程序非常耗时,导致该算法不够实用。上例中256*256的lena图耗时高达33.913968s!!

针对此问题,积分图像的应用(二):非局部均值去噪(NL-means)一文使用积分图像对该算法进行加速。

非局部均值(Nonlocal-Mean)的更多相关文章

  1. 积分图像的应用(二):非局部均值去噪(NL-means)

    非局部均值去噪(NL-means)一文介绍了NL-means基本算法,同时指出了该算法效率低的问题,本文将使用积分图像技术对该算法进行加速. 假设图像共像个素点,搜索窗口大小,领域窗口大小, 计算两个 ...

  2. NLM非局部均值算法相关

    NLM原文: 基于图像分割的非局部均值去噪算法 基于图像分割的非局部均值去噪算法_百度文库 https://wenku.baidu.com/view/6a51abdfcd22bcd126fff705c ...

  3. 非局部均值去噪(NL-means)

    非局部均值(NL-means)是近年来提出的一项新型的去噪技术.该方法充分利用了图像中的冗余信息,在去噪的同时能最大程度地保持图像的细节特征.基本思想是:当前像素的估计值由图像中与它具有相似邻域结构的 ...

  4. 非局部均值滤波算法的python实现

    如题,比opencv自带的实现效果好 #coding:utf8 import cv2 import numpy as np def psnr(A, B): return 10*np.log(255*2 ...

  5. Unix系统编程()执行非局部跳转:setjmp和longjmp

    使用库函数setjmp和longjmp可执行非局部跳转(local goto). 术语"非局部(nonlocal)"是指跳转目标为当前执行函数之外的某个位置. C语言里面有个&qu ...

  6. 非局部模块(Non Local module)

    Efficient Coarse-to-Fine Non-Local Module for the Detection of Small Objects 何恺明提出了非局部神经网络(Non-local ...

  7. CVPR2020:基于自适应采样的非局部神经网络鲁棒点云处理(PointASNL)

    CVPR2020:基于自适应采样的非局部神经网络鲁棒点云处理(PointASNL) PointASNL: Robust Point Clouds Processing Using Nonlocal N ...

  8. OpenCV2:等间隔采样和局部均值的图像缩小

    图像的缩小从物理意义上来说,就是将图像的每个像素的大小缩小相应的倍数.但是,改变像素的物理尺寸显然不是那么容易的,从数字图像处理的角度来看,图像的缩小实际就是通过减少像素个数来实现的.显而易见的,减少 ...

  9. 【转】浅析C语言的非局部跳转:setjmp和longjmp

    转自 http://www.cnblogs.com/lienhua34/archive/2012/04/22/2464859.html C语言中有一个goto语句,其可以结合标号实现函数内部的任意跳转 ...

随机推荐

  1. 关联映射、关联查询【重点掌握一条SQL语句的那种方法】

    1 什么叫关联映射 通过数据库对象之间的关联关系(一对一.一对多.多对多),反映到实体对象上之间的引用. 举例 用户实体类(User):user_id user_name user_token 笔记本 ...

  2. C++笔记--类型和声明

    布尔量 Eg: bool b1=a==b;//这个例子中,=是赋值,==是判断是否相等,所以先是判断是否相等,a如果等于b,b1的值就是true,否则就是false了 Bool经常被用作检查某些条件是 ...

  3. win10和ubuntu双系统下卸载ubuntu

    1.进入win10 2.下载EasyBCD,360软件管家里面有,version=2.2 3.启动软件,工具箱里面选择“BCD部署”→MBR配置选项中选“在MBR中安装Windows Vista/7的 ...

  4. .net中值类型、引用类型理解的c#代码示例

    下面是以前在公司的时候给别人讲解值类型.引用类型时创建的c#代码示例,从实际使用时的角度出发,对于初学者还是很有帮助的.这里并没有深入讲解值类型包含引用类型成员时(如struct)在内存中的存放情况等 ...

  5. HDU - 4597 Play Game(博弈dp)

    Play Game Alice and Bob are playing a game. There are two piles of cards. There are N cards in each ...

  6. 简单的使用rabbitmq的例子

    1.创建了两个项目 : (1).spring_cloud_rabbitmq_send 消息发送者 (2).spring_cloud_rabbitmq_receive  消息接受者 2. 添加rabbi ...

  7. 双击获取GridView控件行信息

    有网友要求在GridView控件上,不管是单击(onclick)还是双击(ondblclick),想获取所击行的信息.技术难度是为GridView的行注册单击或是双击事件.看例子吧:在数据库中创建数据 ...

  8. 分层最短路-2018南京网赛L

    大概题意: 题意:N个点,M条带权有向边,求将K条边权值变为0的情况下,从点1到点N的最短路. 拓展:可以改变K条边的权值为x 做法:把每个点拆成k个点,分别表示还能使用多少次机会,构造新图. 实际写 ...

  9. 简单配置webpack4 + vue

    1.创建webpack4-vue文件夹 mkdir webpack4-vue && cd webpack4-vue 2.初始化npm npm init -y 3.安装相关依赖 npm ...

  10. Redis源码阅读---连接建立

    对于并发请求很高的生产环境,单个Redis满足不了性能要求,通常都会配置Redis集群来提高服务性能.3.0之后的Redis支持了集群模式. Redis官方提供的集群功能是无中心的,命令请求可以发送到 ...