Fliptile

Time Limit: 2000MS Memory Limit: 65536K

Total Submissions: 14701 Accepted: 5381

Description

Farmer John knows that an intellectually satisfied cow is a happy cow who will give more milk. He has arranged a brainy activity for cows in which they manipulate an M × N grid (1 ≤ M ≤ 15; 1 ≤ N ≤ 15) of square tiles, each of which is colored black on one side and white on the other side.

As one would guess, when a single white tile is flipped, it changes to black; when a single black tile is flipped, it changes to white. The cows are rewarded when they flip the tiles so that each tile has the white side face up. However, the cows have rather large hooves and when they try to flip a certain tile, they also flip all the adjacent tiles (tiles that share a full edge with the flipped tile). Since the flips are tiring, the cows want to minimize the number of flips they have to make.

Help the cows determine the minimum number of flips required, and the locations to flip to achieve that minimum. If there are multiple ways to achieve the task with the minimum amount of flips, return the one with the least lexicographical ordering in the output when considered as a string. If the task is impossible, print one line with the word “IMPOSSIBLE”.

Input

Line 1: Two space-separated integers: M and N

Lines 2..M+1: Line i+1 describes the colors (left to right) of row i of the grid with N space-separated integers which are 1 for black and 0 for white

Output

Lines 1..M: Each line contains N space-separated integers, each specifying how many times to flip that particular location.

Sample Input

4 4

1 0 0 1

0 1 1 0

0 1 1 0

1 0 0 1

Sample Output

0 0 0 0

1 0 0 1

1 0 0 1

0 0 0 0


解题心得:

  1. 题意就是给你一个矩阵,你可以选择一个里面的数进行0-1反转,在反转的同时,和这个数相邻的四个方向(上下左右)的数也会跟着0-1反转,现在叫你输出一个选择数反转的方案出来,要求反转次数最少。
  2. 如果进行枚举,可能性为2^(n*m),太大了。可以明确的一点是,反转的顺序对于结果是没有影响的,有影响的只是反转的次数。所以如果我们规定一个从上到下的反转顺序,那么第一排如果能够确定,根据第一排的结果第二排也能确定,就可以得到答案了。但是如何确定第一排呢,只有枚举,将第一排所有的情况枚举出来,然后在第一排已知的情况下向下推,去计算整个矩阵。复杂度为O(n*m(2^n)),这个复杂度是可以接受的。

#include <algorithm>
#include <stdio.h>
#include <cstring>
#include <climits>
using namespace std;
const int maxn = 20; int dir[5][2] = {1,0,0,1,0,0,-1,0,0,-1};
int flip[maxn][maxn],opt[maxn][maxn];//opt用来存放最后反转的操作,flip用来存放当前的反转操作
int tile[maxn][maxn],n,m;// void init() {//tile用来储存原矩阵
scanf("%d%d",&m,&n);
for(int i=0;i<m;i++)
for(int j=0;j<n;j++)
scanf("%d",&tile[i][j]);
} bool check(int x,int y) {//检查是否超出了矩阵的范围
if(x < 0 || y < 0 || x >= m || y >= n)
return true;
return false;
} bool get(int x,int y) {//检验同一列上一行的这个位置是否需要反转
int cnt = tile[x][y];
for(int i=0;i<5;i++) {
int xx = x + dir[i][0];
int yy = y + dir[i][1]; if(check(xx,yy))
continue;
cnt += flip[xx][yy];
}
if(cnt%2)
return true;
return false;
} int cal() {
int cnt = 0;
for(int i=1;i<m;i++) {
for(int j=0;j<n;j++) {
if(get(i-1,j))
flip[i][j] = 1;//如果需要反转做好标记
}
}
for(int i=0;i<n;i++) {
if(get(m-1,i))//检验最后一行是否符合条件
return -1;
} for(int i=0;i<m;i++)
for(int j=0;j<n;j++) {
if(flip[i][j])
cnt++;
}
return cnt;
} int solve() {
int res = INT_MAX;
for(int i=0;i<(1<<n);i++) {//枚举第一行
memset(flip,0,sizeof(flip));
for(int j=n-1;j>=0;j--)
flip[0][j] = (i >> j) & 1;
int num = cal();
if(num > 0 && res > num) {
res = num;
memcpy(opt,flip,sizeof(flip));
}
}
return res;
} void Print() {
for(int i=0;i<m;i++)
for(int j=0;j<n;j++) {
printf("%d%c",opt[i][j],j == n-1 ? '\n' : ' ');
}
} int main() {
init();
int ans = solve();
if(ans == INT_MAX) {
printf("IMPOSSIBLE\n");
return 0;
}
Print();
return 0;
}

POJ:3279-Fliptile(矩阵反转)的更多相关文章

  1. POJ 3279 Fliptile(反转 +二进制枚举)

    Fliptile Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 13631   Accepted: 5027 Descrip ...

  2. POJ - 3279 Fliptile(反转---开关问题)

    题意:有一个M*N的网格,有黑有白,反转使全部变为白色,求最小反转步数情况下的每个格子的反转次数,若最小步数有多个,则输出字典序最小的情况.解不存在,输出IMPOSSIBLE. 分析: 1.枚举第一行 ...

  3. POJ 3279 Fliptile(翻格子)

    POJ 3279 Fliptile(翻格子) Time Limit: 2000MS    Memory Limit: 65536K Description - 题目描述 Farmer John kno ...

  4. POJ.3279 Fliptile (搜索+二进制枚举+开关问题)

    POJ.3279 Fliptile (搜索+二进制枚举+开关问题) 题意分析 题意大概就是给出一个map,由01组成,每次可以选取按其中某一个位置,按此位置之后,此位置及其直接相连(上下左右)的位置( ...

  5. 状态压缩+枚举 POJ 3279 Fliptile

    题目传送门 /* 题意:问最少翻转几次使得棋子都变白,输出翻转的位置 状态压缩+枚举:和之前UVA_11464差不多,枚举第一行,可以从上一行的状态知道当前是否必须翻转 */ #include < ...

  6. POJ 3279(Fliptile)题解

    以防万一,题目原文和链接均附在文末.那么先是题目分析: [一句话题意] 给定长宽的黑白棋棋盘摆满棋子,每次操作可以反转一个位置和其上下左右共五个位置的棋子的颜色,求要使用最少翻转次数将所有棋子反转为黑 ...

  7. POJ 3279 Fliptile(DFS+反转)

    题目链接:http://poj.org/problem?id=3279 题目大意:有一个n*m的格子,每个格子都有黑白两面(0表示白色,1表示黑色).我们需要把所有的格子都反转成黑色,每反转一个格子, ...

  8. poj 3279 Fliptile (简单搜索)

    Fliptile Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 16558   Accepted: 6056 Descrip ...

  9. POJ 3279 - Fliptile - [状压+暴力枚举]

    题目链接:http://poj.org/problem?id=3279 Sample Input 4 4 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 Sample Output 0 ...

  10. POJ - 3279 Fliptile (枚举)

    http://poj.org/problem?id=3279 题意 一个m*n的01矩阵,每次翻转(x,y),那么它上下左右以及本身就会0变1,1变0,问把矩阵变成全0的,最小需要点击多少步,并输出最 ...

随机推荐

  1. Python中的循环体

    一.循环 1.while语句: while 条件: 循环体 else: 当上面的条件不成立时才会执行 执行顺序:判断条件是否为真.如果为真,执行循环体,再次判断条件如果为假,执行else下代码块 2. ...

  2. (七)JavaScript之[调试]与[前端表单验证]

    12].调试为什么要去调试?1.在编写JavaScript时,如果没有调试工具将是一件很痛苦的事情.2.没有调试工具是很难去编写JavaScript程序的.3.编写的代码可能包含语法错误.逻辑错误,如 ...

  3. 【Android 界面效果48】Android-RecyclerView-Item点击事件设置

    在上一篇博客Android-RecylerView初识中提到,RecyclerView不再负责Item视图的布局及显示,所以RecyclerView也没有为Item开放OnItemClick等点击事件 ...

  4. 【Android 界面效果47】RecyclerView详解

    RecylerView作为 support-library发布出来,这对开发者来说绝对是个好消息.因为可以在更低的Android版本上使用这个新视图.下面我们看如何获取 RecylerView.首先打 ...

  5. python模块详解 YAML和configparser

    YAML模块 主要用来做配置文件用的. yaml格式: 详细参考官方文档:PyYAML configparser模块 同样是用于生成和修改配置文件用的.格式和mysql一样. 生成配置文件 impor ...

  6. SQL中的聚合函数

    聚合函数是对一组值执行计算并返回单一的值的函数,它经常与SELECT语句的GROUP BY子句一同使用,SQL SERVER 中具体的聚合函数如下:1. AVG 返回指定组中的平均值,空值被忽略. 例 ...

  7. session登录超时跳出iframe页至登录窗口

    //当我们用权限框架控制登录超时跳至某一个页面时主页面都没什么问题:iframe会在当前窗口下再开一个会话很显然这不是我们想要达到的效果 在登录页中加入此判断即可 $(function(){ //if ...

  8. 支持多域名的免费SSL证书

    知乎网友称其支持多域名: https://www.zhihu.com/question/19578422 配置教程: https://www.cnblogs.com/duanweishi/p/8483 ...

  9. leetcode:查找

    1.  word ladder 题目: Given two words (start and end), and a dictionary, find the length of shortest t ...

  10. python pip安装报错python setup.py egg_info failed with error code 1

    安装locust遇到点问题折腾了好一会儿,记录一下. 使用命令pip install locustio提示python setup.py egg_info  failed with error cod ...