Max Sum Plus Plus

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 35485    Accepted Submission(s): 12639

Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).

Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).

But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^

 
Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.
 
Output
Output the maximal summation described above in one line.
 
Sample Input
1 3 1 2 3
2 6 -1 4 -2 3 -2 3
 
Sample Output
6
8

Hint

Huge input, scanf and dynamic programming is recommended.

状态dp[i][j]有前j个数,组成i组的和的最大值。决策: 
第j个数,是在第包含在第i组里面,还是自己独立成组。
方程 dp[i][j]=Max(dp[i][j-1]+a[j] , max( dp[i-1][k] ) + a[j] ) 0<k<j
空间复杂度,m未知,n<=1000000, 继续滚动数组。
时间复杂度 n^3. n<=1000000. 显然会超时,继续优化。
max( dp[i-1][k] ) 就是上一组 0....j-1 的最大值。
我们可以在每次计算dp[i][j]的时候记录下前j个的最大值
用数组保存下来 下次计算的时候可以用,这样时间复杂度为 n^2.
#include <cstdio>
#include <algorithm>
#include <iostream>
#include <cstring>
using namespace std;
const int maxn = 1e6+;
const int INF = 0x7fffffff;
int dp[maxn];
int a[maxn];
int mmax[maxn];
int main(){
int n,m;
int maxx;
while(scanf("%d%d",&m,&n) !=EOF){
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
mmax[i]=;
dp[i]=;
}
dp[]=;
mmax[]=;
for(int i=;i<=m;i++){
maxx=-*INF;
for(int j=i;j<=n;j++){
dp[j]=max(dp[j-]+a[j],mmax[j-]+a[j]);
mmax[j-]=maxx;
maxx=max(maxx,dp[j]);
}
}
printf("%d\n", maxx);
}
return ;
}

DP———2.最大m子序列和的更多相关文章

  1. HDU 1087 简单dp,求递增子序列使和最大

    Super Jumping! Jumping! Jumping! Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 ...

  2. hdu 1025 dp 最长上升子序列

    //Accepted 4372 KB 140 ms //dp 最长上升子序列 nlogn #include <cstdio> #include <cstring> #inclu ...

  3. DP——最长上升子序列(LIS)

    DP——最长上升子序列(LIS) 基本定义: 一个序列中最长的单调递增的子序列,字符子序列指的是字符串中不一定连续但先后顺序一致的n个字符,即可以去掉字符串中的部分字符,但不可改变其前后顺序. LIS ...

  4. 动态规划(Dynamic Programming, DP)---- 最大连续子序列和

    动态规划(Dynamic Programming, DP)是一种用来解决一类最优化问题的算法思想,简单来使,动态规划是将一个复杂的问题分解成若干个子问题,或者说若干个阶段,下一个阶段通过上一个阶段的结 ...

  5. [ An Ac a Day ^_^ ] HDU 1257 基础dp 最长上升子序列

    最近两天在迎新 看来只能接着水题了…… 新生培训的任务分配 作为一个有担当的学长 自觉去选了动态规划…… 然后我觉得我可以开始水动态规划了…… 今天水一发最长上升子序列…… kuangbin有nlog ...

  6. 洛谷 P1020 导弹拦截(dp+最长上升子序列变形)

    传送门:Problem 1020 https://www.cnblogs.com/violet-acmer/p/9852294.html 讲解此题前,先谈谈何为最长上升子序列,以及求法: 一.相关概念 ...

  7. hdu1159 dp(最长公共子序列)

    题意:给两个字符串,求这两个字符串的最长公共子序列的长度 因为之前集训的时候做过,所以现在即使会做也并不是什么稀奇的事,依旧为了自己的浅薄感到羞愧啊``` 解法就是通过两个字符串的每个字符互相比较,根 ...

  8. POJ-1887 Testing the CATCHER(dp,最长下降子序列)

    Testing the CATCHER Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 16515 Accepted: 6082 ...

  9. hdu1087 dp(最大上升子序列和)

    题意,给出一列数,要求所有上升子序列中序列和最大的. 这回不是求长度了,但是还是相当基础的 dp 水题,只要用 dp [ q ] 记录以 第 q 个数 a [ q ] 为结尾的上升子序列的最大的和就可 ...

  10. HDU 4632 Palindrome subsequence(区间DP求回文子序列数)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4632 题目大意:给你若干个字符串,回答每个字符串有多少个回文子序列(可以不连续的子串).解题思路: 设 ...

随机推荐

  1. jquery动态改变元素内容

    ● text() - 设置或返回所选元素的文本内容 ● html() - 设置或返回所选元素的内容(包括 HTML 标记) ● val() - 设置或返回表单字段的值(只针对表单或者输入框)

  2. ubuntu built-in display 产生的一个原因

    在没有禁用开源的显卡驱动 nouveau 下,从 apt 安装了nvidia的驱动,导致了后面开机后,系统不能正确的识别到显示器,整个界面分辨率变的非常小,在设置菜单中的显示设置中也不能调节分辨率,并 ...

  3. PCA 实例演示二维数据降成1维

    import numpy as np # 将二维数据降成1维 num = [(2.5, 2.4), (0.5, 0.7), (2.2, 2.9), (1.9, 2.2), (3.1, 3.0), (2 ...

  4. struts2之标签库

    使用Struts2标签的准备工作: 导入Struts2标签库,该标签定义文件位于 struts2-core-2.3.16.3.jar 的 METE-INF下的struts-tag.tld文件. < ...

  5. Python变量、赋值及作用域

    ## 变量 - 指向唯一内存地址的一个名字 - 目的是为了更方便地引用内存中的值 - 可以使用id(变量)函数来查看变量的唯一id值,若两者id值相同,则表示两个变量指向同一地址,两个变量的值完全相同 ...

  6. PHP常用的自定义函数

    PHP常用的自定义函数 目录 php常用自定义函数类下载 php 设置字符编码为utf-8 路径格式化(替换双斜线为单斜线) 转码 打印输出 api返回信息 字符串截取 方法一: 方法二: 数组 字符 ...

  7. Linux段式管理与页式管理

    内存管理有2种机制:1.段式管理:2.页式管理 在80386CPU中增加了2个寄存器:1.全局性的段描述表寄存器GDTR 2.局部性的段描述表寄存器LDTR 段寄存器的高13位用于在全局或局部描述表项 ...

  8. mybatis在where中比较复杂的判断

    <if test="param.applicationStateInNumber != null and param.applicationStateInNumber != ''&qu ...

  9. 剑指Offer - 九度1386 - 旋转数组的最小数字

    剑指Offer - 九度1386 - 旋转数组的最小数字2013-11-24 01:57 题目描述: 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转.输入一个递增排序的数组的一个旋转 ...

  10. 小程序使用Canvas画饼图

    先上效果图 -------------------------------------------------------------wxml代码开始------------------------- ...