hadoop-2.3.0-cdh5.1.0完全分布式集群配置及HA配置(待)
一、安装前准备:
操作系统:CentOS
6.5
64
位操作系统
环境:jdk1.
7
.0_45以上,本次采用jdk-7u55-linux-x64.tar.gz
master01
10.10
.
2.57
namenode 节点
master02
10.10
.
2.58
namenode 节点
slave01:
10.10
.
2.173
datanode 节点
slave02:
10.10
.
2.59
datanode 节点
slave03:
10.10
.
2.60
datanode 节点
注:Hadoop2.
0
以上采用的是jdk环境是
1.7
,Linux自带的jdk卸载掉,重新安装
下载地址:http:
//www.oracle.com/technetwork/java/javase/downloads/index.html
软件版本:hadoop-
2.3
.
0
-cdh5.
1.0
.tar.gz, zookeeper-
3.4
.
5
-cdh5.
1.0
.tar.gz
下载地址:http:
//archive.cloudera.com/cdh5/cdh/5/
开始安装:
二、jdk安装
1
、检查是否自带jdk
rpm -qa | grep jdk
java-
1.6
.
0
-openjdk-
1.6
.
0.0
-
1.45
.
1.11
.
1
.el6.i686
2
、卸载自带jdk
yum -y remove java-
1.6
.
0
-openjdk-
1.6
.
0.0
-
1.45
.
1.11
.
1
.el6.i686
3
、安装jdk-7u55-linux-x64.tar.gz
在usr/目录下创建文件夹java,在java文件夹下运行tar –zxvf jdk-7u55-linux-x64.tar.gz
解压到java目录下
[root
@master01
java]# ls
jdk1.
7
.0_55
三、配置环境变量
远行vi /etc/profile
# /etc/profile
# System wide environment and startup programs,
for
login setup
# Functions and aliases go in /etc/bashrc
export JAVA_HOME=/usr/java/jdk1.
7
.0_55
export JRE_HOME=/usr/java/jdk1.
7
.0_55/jre
export CLASSPATH=/usr/java/jdk1.
7
.0_55/lib
export PATH=$JAVA_HOME/bin: $PATH
保存修改,运行source /etc/profile 重新加载环境变量
运行java -version
[root
@master01
java]# java -version
java version
"1.7.0_55"
Java(TM) SE Runtime Environment (build
1.7
.0_55-b13)
Java HotSpot(TM)
64
-Bit Server VM (build
24.55
-b03, mixed mode)
Jdk配置成功
四、系统配置
预先准备
5
台机器,并配置IP
关闭防火墙
chkconfig iptables off(永久性关闭)
配置主机名和hosts文件
[root
@master01
java]# vi /etc/hosts
127.0
.
0.1
localhost localhost.localdomain localhost4 localhost4.localdomain4
::
1
localhost localhost.localdomain localhost6 localhost6.localdomain6
10.10
.
2.57
master01
10.10
.
2.58
master02
10.10
.
2.173
slave01
10.10
.
2.59
slave02
10.10
.
2.60
slave03
按照不同机器IP配置不同的主机名
3
、SSH无密码验证配置
因为Hadoop运行过程需要远程管理Hadoop的守护进程,NameNode节点需要通过SSH(Secure Shell)链接各个DataNode节点,停止或启动他们的进程,所以SSH必须是没有密码的,所以我们要把NameNode节点和DataNode节点配制成无秘密通信,同理DataNode也需要配置无密码链接NameNode节点。
在每一台机器上配置:
vi /etc/ssh/sshd_config打开
RSAAuthentication yes # 启用 RSA 认证,PubkeyAuthentication yes # 启用公钥私钥配对认证方式
Master01:运行:ssh-keygen –t rsa –P
''
不输入密码直接enter
默认存放在 /root/.ssh目录下,
cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
[root
@master01
.ssh]# ls
authorized_keys id_rsa id_rsa.pub known_hosts
slave01执行相同的操作,然后将master01 /root/.ssh/目录下的id_rsa.pub放到 slave01 相同目录下的authorized_keys这样slave01就持有了master01的公钥 然后直接ssh slave01测试是否可以无密码连接到slave01上,然后将slave01 上的id_rsa.pub 追加到master01的authorized_keys中,测试ssh master01 是否可以直接连上slave01.
[root
@master01
~]# ssh slave01
Last login: Tue Aug
19
14
:
28
:
15
2014
from master01
[root
@slave01
~]#
Master01-master02
Master01-slave01
Master01-slave02
Master01-slave03
Master02-slave01
Master02-slave02
Master02-slave03
执行相同的操作。
五、安装Hadoop
建立文件目录 /usr/local/cloud 创建文件夹data,存放数据、日志文件,haooop原文件,zookeeper原文件
[root
@slave01
cloud]# ls
data hadoop tar zookeeper
5.1
、配置hadoop-env.sh
进入到/usr/local/cloud/hadoop/etc/hadoop目录下
配置vi hadoop-env.sh hadoop运行环境加载
export JAVA_HOME=/usr/java/jdk1.
7
.0_55
5.2
、配置core-site.xml
<!—hadoop.tmp.dir:hadoop很多路径都依赖他,namenode节点该目录不可以删除,否则需要重新格式化-->
<property>
<name>hadoop.tmp.dir</name>
<value>/usr/local/cloud/data/hadoop/tmp</value>
</property>
<!—这个配置文件描述了集群的namenode节点的url,这里采用HA代表默认逻辑名,集群中的每个datanode节点都需要知道namenode的地址,数据才可以被使用-->
<property>
<name>fs.defaultFS</name>
<value>hdfs:
//zzg</value>
</property>
<!-- zookeeper集群的地址和端口,最好保持基数个至少
3
台-->
<property>
<name>ha.zookeeper.quorum</name>
<value>master01:
2181
,slave01:
2181
,slave02:
2181
</value>
</property>
(
2
)hdfs-site.xml配置
<!—hadoop namenode数据的存储目录,只是针对与namenode,包含了namenode的系统信息元数据信息-->
<property>
<name>dfs.namenode.name.dir</name>
<value>/usr/local/cloud/data/hadoop/dfs/nn</value>
</property>
<!—datanode 要存储到数据到本地的路径,不必每一台机器都一样,但是为了方便管理最好还是一样-->
<property>
<name>dfs.datanode.data.dir</name>
<value>/usr/local/cloud/data/hadoop/dfs/dn</value>
</property>
<!—系统中文件备份数量,系统默认是
3
分-->
<property>
<name>dfs.replication</name>
<value>
3
</value>
</property>
<!-- dfs.webhdfs.enabled 置为
true
,否则一些命令无法使用如:webhdfs的LISTSTATUS -->
<property>
<name>dfs.webhdfs.enabled</name>
<value>
true
</value>
</property>
<!—可选,关闭权限带来一些不必要的麻烦-->
<property>
<name>dfs.permissions</name>
<value>
false
</value>
</property>
<!—可选,关闭权限带来一些不必要的麻烦-->
<property>
<name>dfs.permissions.enabled</name>
<value>
false
</value>
</property>
<!—HA配置-->
<!—设置集群的逻辑名-->
<property>
<name>dfs.nameservices</name>
<value>zzg</value>
</property>
<!—hdfs联邦集群中的namenode节点逻辑名-->
<property>
<name>dfs.ha.namenodes.zzg</name>
<value>nn1,nn2</value>
</property>
<!—hdfs namenode逻辑名中RPC配置,rpc 简单理解为序列化文件上传输出文件要用到-->
<property>
<name>dfs.namenode.rpc-address.zzg.nn1</name>
<value>master01:
9000
</value>
</property>
<property>
<name>dfs.namenode.rpc-address.zzg.nn2</name>
<value>master02:
9000
</value>
</property>
<!—配置hadoop页面访问端口端口-->
<property>
<name>dfs.namenode.http-address.zzg.nn1</name>
<value>master01:
50070
</value>
</property>
<property>
<name>dfs.namenode.http-address.zzg.nn2</name>
<value>master02:
50070
</value>
</property>
<!—建立与namenode的通信-->
<property>
<name>dfs.namenode.servicerpc-address.zzg.nn1</name>
<value>master01:
53310
</value>
</property>
<property>
<name>dfs.namenode.servicerpc-address.zzg.nn2</name>
<value>master02:
53310
</value>
</property>
<!—journalnode 共享文件集群-->
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal:
//master01:8485;slave01:8485;slave02:8485/zzg</value>
</property>
<!—journalnode对namenode的进行共享设置-->
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/usr/local/cloud/data/hadoop/ha/journal</value>
</property>
<!—设置故障处理类-->
<property>
<name>dfs.client.failover.proxy.provider.zzg</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<!—开启自动切换-->
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>
true
</value>
</property>
<property>
<name>ha.zookeeper.quorum</name>
<value>master01:
2181
,slave01:
2181
,slave02:
2181
</value>
</property>
<!—使用ssh方式进行故障切换-->
<property>
<name>dfs.ha.fencing.methods</name>
<value>sshfence</value>
</property>
<!—ssh通信密码通信位置-->
<property>
<name>dfs.ha.fencing.ssh.
private
-key-files</name>
<value>/root/.ssh/id_rsa</value>
</property>
5.3
配置maped-site.xml
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
5.4
配置yarn HA
配置yarn-en.sh java环境
# some Java parameters
export JAVA_HOME=/usr/java/jdk1.
7
.0_55
5.5
配置yarn-site.xml
<!—rm失联后重新链接的时间-->
<property>
<name>yarn.resourcemanager.connect.retry-interval.ms</name>
<value>
2000
</value>
</property>
<!—开启resource manager HA,默认为
false
-->
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>
true
</value>
</property>
<!—开启故障自动切换-->
<property>
<name>yarn.resourcemanager.ha.automatic-failover.enabled</name>
<value>
true
</value>
</property>
<!—配置resource manager -->
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<!—在master01上配置rm1,在master02上配置rm2,-->
<property>
<name>yarn.resourcemanager.ha.id</name>
<value>rm1</value>
<description>If we want to launch more than one RM in single node, we need
this
configuration</description>
</property>
<!—开启自动恢复功能-->
<property>
<name>yarn.resourcemanager.recovery.enabled</name>
<value>
true
</value>
</property>
<!—配置与zookeeper的连接地址-->
<property>
<name>yarn.resourcemanager.zk-state-store.address</name>
<value>localhost:
2181
</value>
</property>
<property>
<name>yarn.resourcemanager.store.
class
</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
</property>
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>localhost:
2181
</value>
</property>
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>yarn-cluster</value>
</property>
<!—schelduler失联等待连接时间-->
<property>
<name>yarn.app.mapreduce.am.scheduler.connection.wait.interval-ms</name>
<value>
5000
</value>
</property>
<!—配置rm1-->
<property>
<name>yarn.resourcemanager.address.rm1</name>
<value>master01:
23140
</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address.rm1</name>
<value>master01:
23130
</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address.rm1</name>
<value>master01:
23188
</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address.rm1</name>
<value>master01:
23125
</value>
</property>
<property>
<name>yarn.resourcemanager.admin.address.rm1</name>
<value>master01:
23141
</value>
</property>
<property>
<name>yarn.resourcemanager.ha.admin.address.rm1</name>
<value>master01:
23142
</value>
</property>
<!—配置rm2-->
<property>
<name>yarn.resourcemanager.address.rm2</name>
<value>master02:
23140
</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address.rm2</name>
<value>master02:
23130
</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address.rm2</name>
<value>master02:
23188
</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address.rm2</name>
<value>master02:
23125
</value>
</property>
<property>
<name>yarn.resourcemanager.admin.address.rm2</name>
<value>master02:
23141
</value>
</property>
<property>
<name>yarn.resourcemanager.ha.admin.address.rm2</name>
<value>master02:
23142
</value>
</property>
<!—配置nodemanager-->
<property>
<description>Address where the localizer IPC is.</description>
<name>yarn.nodemanager.localizer.address</name>
<value>
0.0
.
0.0
:
23344
</value>
</property>
<!—nodemanager http访问端口-->
<property>
<description>NM Webapp address.</description>
<name>yarn.nodemanager.webapp.address</name>
<value>
0.0
.
0.0
:
23999
</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.
class
</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
<property>
<name>yarn.nodemanager.local-dirs</name>
<value>/usr/local/cloud/data/hadoop/yarn/local</value>
</property>
<property>
<name>yarn.nodemanager.log-dirs</name>
<value>/usr/local/cloud/data/logs/hadoop</value>
</property>
<property>
<name>mapreduce.shuffle.port</name>
<value>
23080
</value>
</property>
<!—故障处理类-->
<property>
<name>yarn.client.failover-proxy-provider</name>
<value>org.apache.hadoop.yarn.client.ConfiguredRMFailoverProxyProvider</value>
</property>
六、配置zookeeper集群
在zookeeper目录下建立data目录 和logs目录,
配置zoo.cnf
dataDir=/usr/local/cloud/zookeeper/data
dataLogDir=/usr/local/cloud/zookeeper/logs
# the port at which the clients will connect
clientPort=
2181
server.
1
=master01:
2888
:
3888
server.
2
=master02:
2888
:
3888
server.
3
=slave01:
2888
:
3888
server.
4
=slave02:
2888
:
3888
server.
5
=slave03:
2888
:
3888
在data目录下创建myid文件,并在对应的机器上填写数字,如上配置master01 server01 的myid写入
1
,
master02 中的data的myid写入
2
,依次在其他机子上执行相同操作。
在各个机器下zookeeper目录下的bin目录下执行zkServer.sh start命令
再运行zkServer.sh status如果出现leader 或fllower 则说明集群配置正确。
到此各个配置文件配置完毕
七、启动Hadoop集群严格按照以下顺序执行(第一次)
(
1
)各个节点启动zookeeper,在zookeeper/bin/zkServer.sh start
(
2
) 在hadoop/bin/hdfs zkfc –formatZK 进行格式化创建命名空间
(
3
)在配置了journalnode的节点启动,master01,slave01,slave02
在hadoop/sbin/hadoop-daemon.sh journalnode
(
4
)在主namenode节点执行格式化
./bin/hadoop namenode -format zzg
主机器上启动namenode
hadoop/sbin/ hadoop-daemon.sh start namenode
(
5
)将主namenode节点格式化的目录拷贝到从主namenode节点上
hadoop/bin/hdfs namenode –bootstrapStandby
hadoop/sbin/hadoop-daemon.sh start namenode
(
6
) 在两个namenode节点都执行以下命令
./sbin/hadoop-daemon.sh start zkfc
(
7
) 在所有datanode节点都执行以下命令启动datanode
./sbin/hadoop-daemon.sh start datanode
(
8
)在主namenode节点启动yarn,运行yarn-start.sh命令
jps可以看到
namenode节点
[root
@master01
~]# jps
38972
JournalNode
38758
NameNode
39166
DFSZKFailoverController
37473
QuorumPeerMain
39778
ResourceManager
42620
Jps
datanode节点
[root
@slave01
~]# jps
33440
DataNode
35277
Jps
32681
QuorumPeerMain
33568
JournalNode
34231
NodeManager
一、安装前准备:
操作系统:CentOS
6.5
64
位操作系统
环境:jdk1.
7
.0_45以上,本次采用jdk-7u55-linux-x64.tar.gz
master01
10.10
.
2.57
namenode 节点
master02
10.10
.
2.58
namenode 节点
slave01:
10.10
.
2.173
datanode 节点
slave02:
10.10
.
2.59
datanode 节点
slave03:
10.10
.
2.60
datanode 节点
注:Hadoop2.
0
以上采用的是jdk环境是
1.7
,Linux自带的jdk卸载掉,重新安装
下载地址:http:
//www.oracle.com/technetwork/java/javase/downloads/index.html
软件版本:hadoop-
2.3
.
0
-cdh5.
1.0
.tar.gz, zookeeper-
3.4
.
5
-cdh5.
1.0
.tar.gz
下载地址:http:
//archive.cloudera.com/cdh5/cdh/5/
开始安装:
二、jdk安装
1
、检查是否自带jdk
rpm -qa | grep jdk
java-
1.6
.
0
-openjdk-
1.6
.
0.0
-
1.45
.
1.11
.
1
.el6.i686
2
、卸载自带jdk
yum -y remove java-
1.6
.
0
-openjdk-
1.6
.
0.0
-
1.45
.
1.11
.
1
.el6.i686
3
、安装jdk-7u55-linux-x64.tar.gz
在usr/目录下创建文件夹java,在java文件夹下运行tar –zxvf jdk-7u55-linux-x64.tar.gz
解压到java目录下
[root
@master01
java]# ls
jdk1.
7
.0_55
三、配置环境变量
远行vi /etc/profile
# /etc/profile
# System wide environment and startup programs,
for
login setup
# Functions and aliases go in /etc/bashrc
export JAVA_HOME=/usr/java/jdk1.
7
.0_55
export JRE_HOME=/usr/java/jdk1.
7
.0_55/jre
export CLASSPATH=/usr/java/jdk1.
7
.0_55/lib
export PATH=$JAVA_HOME/bin: $PATH
保存修改,运行source /etc/profile 重新加载环境变量
运行java -version
[root
@master01
java]# java -version
java version
"1.7.0_55"
Java(TM) SE Runtime Environment (build
1.7
.0_55-b13)
Java HotSpot(TM)
64
-Bit Server VM (build
24.55
-b03, mixed mode)
Jdk配置成功
四、系统配置
预先准备
5
台机器,并配置IP
关闭防火墙
chkconfig iptables off(永久性关闭)
配置主机名和hosts文件
[root
@master01
java]# vi /etc/hosts
127.0
.
0.1
localhost localhost.localdomain localhost4 localhost4.localdomain4
::
1
localhost localhost.localdomain localhost6 localhost6.localdomain6
10.10
.
2.57
master01
10.10
.
2.58
master02
10.10
.
2.173
slave01
10.10
.
2.59
slave02
10.10
.
2.60
slave03
按照不同机器IP配置不同的主机名
3
、SSH无密码验证配置
因为Hadoop运行过程需要远程管理Hadoop的守护进程,NameNode节点需要通过SSH(Secure Shell)链接各个DataNode节点,停止或启动他们的进程,所以SSH必须是没有密码的,所以我们要把NameNode节点和DataNode节点配制成无秘密通信,同理DataNode也需要配置无密码链接NameNode节点。
在每一台机器上配置:
vi /etc/ssh/sshd_config打开
RSAAuthentication yes # 启用 RSA 认证,PubkeyAuthentication yes # 启用公钥私钥配对认证方式
Master01:运行:ssh-keygen –t rsa –P
''
不输入密码直接enter
默认存放在 /root/.ssh目录下,
cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
[root
@master01
.ssh]# ls
authorized_keys id_rsa id_rsa.pub known_hosts
slave01执行相同的操作,然后将master01 /root/.ssh/目录下的id_rsa.pub放到 slave01 相同目录下的authorized_keys这样slave01就持有了master01的公钥 然后直接ssh slave01测试是否可以无密码连接到slave01上,然后将slave01 上的id_rsa.pub 追加到master01的authorized_keys中,测试ssh master01 是否可以直接连上slave01.
[root
@master01
~]# ssh slave01
Last login: Tue Aug
19
14
:
28
:
15
2014
from master01
[root
@slave01
~]#
Master01-master02
Master01-slave01
Master01-slave02
Master01-slave03
Master02-slave01
Master02-slave02
Master02-slave03
执行相同的操作。
五、安装Hadoop
建立文件目录 /usr/local/cloud 创建文件夹data,存放数据、日志文件,haooop原文件,zookeeper原文件
[root
@slave01
cloud]# ls
data hadoop tar zookeeper
5.1
、配置hadoop-env.sh
进入到/usr/local/cloud/hadoop/etc/hadoop目录下
配置vi hadoop-env.sh hadoop运行环境加载
export JAVA_HOME=/usr/java/jdk1.
7
.0_55
5.2
、配置core-site.xml
<!—hadoop.tmp.dir:hadoop很多路径都依赖他,namenode节点该目录不可以删除,否则需要重新格式化-->
<property>
<name>hadoop.tmp.dir</name>
<value>/usr/local/cloud/data/hadoop/tmp</value>
</property>
<!—这个配置文件描述了集群的namenode节点的url,这里采用HA代表默认逻辑名,集群中的每个datanode节点都需要知道namenode的地址,数据才可以被使用-->
<property>
<name>fs.defaultFS</name>
<value>hdfs:
//zzg</value>
</property>
<!-- zookeeper集群的地址和端口,最好保持基数个至少
3
台-->
<property>
<name>ha.zookeeper.quorum</name>
<value>master01:
2181
,slave01:
2181
,slave02:
2181
</value>
</property>
(
2
)hdfs-site.xml配置
<!—hadoop namenode数据的存储目录,只是针对与namenode,包含了namenode的系统信息元数据信息-->
<property>
<name>dfs.namenode.name.dir</name>
<value>/usr/local/cloud/data/hadoop/dfs/nn</value>
</property>
<!—datanode 要存储到数据到本地的路径,不必每一台机器都一样,但是为了方便管理最好还是一样-->
<property>
<name>dfs.datanode.data.dir</name>
<value>/usr/local/cloud/data/hadoop/dfs/dn</value>
</property>
<!—系统中文件备份数量,系统默认是
3
分-->
<property>
<name>dfs.replication</name>
<value>
3
</value>
</property>
<!-- dfs.webhdfs.enabled 置为
true
,否则一些命令无法使用如:webhdfs的LISTSTATUS -->
<property>
<name>dfs.webhdfs.enabled</name>
<value>
true
</value>
</property>
<!—可选,关闭权限带来一些不必要的麻烦-->
<property>
<name>dfs.permissions</name>
<value>
false
</value>
</property>
<!—可选,关闭权限带来一些不必要的麻烦-->
<property>
<name>dfs.permissions.enabled</name>
<value>
false
</value>
</property>
<!—HA配置-->
<!—设置集群的逻辑名-->
<property>
<name>dfs.nameservices</name>
<value>zzg</value>
</property>
<!—hdfs联邦集群中的namenode节点逻辑名-->
<property>
<name>dfs.ha.namenodes.zzg</name>
<value>nn1,nn2</value>
</property>
<!—hdfs namenode逻辑名中RPC配置,rpc 简单理解为序列化文件上传输出文件要用到-->
<property>
<name>dfs.namenode.rpc-address.zzg.nn1</name>
<value>master01:
9000
</value>
</property>
<property>
<name>dfs.namenode.rpc-address.zzg.nn2</name>
<value>master02:
9000
</value>
</property>
<!—配置hadoop页面访问端口端口-->
<property>
<name>dfs.namenode.http-address.zzg.nn1</name>
<value>master01:
50070
</value>
</property>
<property>
<name>dfs.namenode.http-address.zzg.nn2</name>
<value>master02:
50070
</value>
</property>
<!—建立与namenode的通信-->
<property>
<name>dfs.namenode.servicerpc-address.zzg.nn1</name>
<value>master01:
53310
</value>
</property>
<property>
<name>dfs.namenode.servicerpc-address.zzg.nn2</name>
<value>master02:
53310
</value>
</property>
<!—journalnode 共享文件集群-->
<property>
<name>dfs.namenode.shared.edits.dir</name>
<value>qjournal:
//master01:8485;slave01:8485;slave02:8485/zzg</value>
</property>
<!—journalnode对namenode的进行共享设置-->
<property>
<name>dfs.journalnode.edits.dir</name>
<value>/usr/local/cloud/data/hadoop/ha/journal</value>
</property>
<!—设置故障处理类-->
<property>
<name>dfs.client.failover.proxy.provider.zzg</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
<!—开启自动切换-->
<property>
<name>dfs.ha.automatic-failover.enabled</name>
<value>
true
</value>
</property>
<property>
<name>ha.zookeeper.quorum</name>
<value>master01:
2181
,slave01:
2181
,slave02:
2181
</value>
</property>
<!—使用ssh方式进行故障切换-->
<property>
<name>dfs.ha.fencing.methods</name>
<value>sshfence</value>
</property>
<!—ssh通信密码通信位置-->
<property>
<name>dfs.ha.fencing.ssh.
private
-key-files</name>
<value>/root/.ssh/id_rsa</value>
</property>
5.3
配置maped-site.xml
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
5.4
配置yarn HA
配置yarn-en.sh java环境
# some Java parameters
export JAVA_HOME=/usr/java/jdk1.
7
.0_55
5.5
配置yarn-site.xml
<!—rm失联后重新链接的时间-->
<property>
<name>yarn.resourcemanager.connect.retry-interval.ms</name>
<value>
2000
</value>
</property>
<!—开启resource manager HA,默认为
false
-->
<property>
<name>yarn.resourcemanager.ha.enabled</name>
<value>
true
</value>
</property>
<!—开启故障自动切换-->
<property>
<name>yarn.resourcemanager.ha.automatic-failover.enabled</name>
<value>
true
</value>
</property>
<!—配置resource manager -->
<property>
<name>yarn.resourcemanager.ha.rm-ids</name>
<value>rm1,rm2</value>
</property>
<!—在master01上配置rm1,在master02上配置rm2,-->
<property>
<name>yarn.resourcemanager.ha.id</name>
<value>rm1</value>
<description>If we want to launch more than one RM in single node, we need
this
configuration</description>
</property>
<!—开启自动恢复功能-->
<property>
<name>yarn.resourcemanager.recovery.enabled</name>
<value>
true
</value>
</property>
<!—配置与zookeeper的连接地址-->
<property>
<name>yarn.resourcemanager.zk-state-store.address</name>
<value>localhost:
2181
</value>
</property>
<property>
<name>yarn.resourcemanager.store.
class
</name>
<value>org.apache.hadoop.yarn.server.resourcemanager.recovery.ZKRMStateStore</value>
</property>
<property>
<name>yarn.resourcemanager.zk-address</name>
<value>localhost:
2181
</value>
</property>
<property>
<name>yarn.resourcemanager.cluster-id</name>
<value>yarn-cluster</value>
</property>
<!—schelduler失联等待连接时间-->
<property>
<name>yarn.app.mapreduce.am.scheduler.connection.wait.interval-ms</name>
<value>
5000
</value>
</property>
<!—配置rm1-->
<property>
<name>yarn.resourcemanager.address.rm1</name>
<value>master01:
23140
</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address.rm1</name>
<value>master01:
23130
</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address.rm1</name>
<value>master01:
23188
</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address.rm1</name>
<value>master01:
23125
</value>
</property>
<property>
<name>yarn.resourcemanager.admin.address.rm1</name>
<value>master01:
23141
</value>
</property>
<property>
<name>yarn.resourcemanager.ha.admin.address.rm1</name>
<value>master01:
23142
</value>
</property>
<!—配置rm2-->
<property>
<name>yarn.resourcemanager.address.rm2</name>
<value>master02:
23140
</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address.rm2</name>
<value>master02:
23130
</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address.rm2</name>
<value>master02:
23188
</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address.rm2</name>
<value>master02:
23125
</value>
</property>
<property>
<name>yarn.resourcemanager.admin.address.rm2</name>
<value>master02:
23141
</value>
</property>
<property>
<name>yarn.resourcemanager.ha.admin.address.rm2</name>
<value>master02:
23142
</value>
</property>
<!—配置nodemanager-->
<property>
<description>Address where the localizer IPC is.</description>
<name>yarn.nodemanager.localizer.address</name>
<value>
0.0
.
0.0
:
23344
</value>
</property>
<!—nodemanager http访问端口-->
<property>
<description>NM Webapp address.</description>
<name>yarn.nodemanager.webapp.address</name>
<value>
0.0
.
0.0
:
23999
</value>
</property>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.
class
</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>
<property>
<name>yarn.nodemanager.local-dirs</name>
<value>/usr/local/cloud/data/hadoop/yarn/local</value>
</property>
<property>
<name>yarn.nodemanager.log-dirs</name>
<value>/usr/local/cloud/data/logs/hadoop</value>
</property>
<property>
<name>mapreduce.shuffle.port</name>
<value>
23080
</value>
</property>
<!—故障处理类-->
<property>
<name>yarn.client.failover-proxy-provider</name>
<value>org.apache.hadoop.yarn.client.ConfiguredRMFailoverProxyProvider</value>
</property>
六、配置zookeeper集群
在zookeeper目录下建立data目录 和logs目录,
配置zoo.cnf
dataDir=/usr/local/cloud/zookeeper/data
dataLogDir=/usr/local/cloud/zookeeper/logs
# the port at which the clients will connect
clientPort=
2181
server.
1
=master01:
2888
:
3888
server.
2
=master02:
2888
:
3888
server.
3
=slave01:
2888
:
3888
server.
4
=slave02:
2888
:
3888
server.
5
=slave03:
2888
:
3888
在data目录下创建myid文件,并在对应的机器上填写数字,如上配置master01 server01 的myid写入
1
,
master02 中的data的myid写入
2
,依次在其他机子上执行相同操作。
在各个机器下zookeeper目录下的bin目录下执行zkServer.sh start命令
再运行zkServer.sh status如果出现leader 或fllower 则说明集群配置正确。
到此各个配置文件配置完毕
七、启动Hadoop集群严格按照以下顺序执行(第一次)
(
1
)各个节点启动zookeeper,在zookeeper/bin/zkServer.sh start
(
2
) 在hadoop/bin/hdfs zkfc –formatZK 进行格式化创建命名空间
(
3
)在配置了journalnode的节点启动,master01,slave01,slave02
在hadoop/sbin/hadoop-daemon.sh journalnode
(
4
)在主namenode节点执行格式化
./bin/hadoop namenode -format zzg
主机器上启动namenode
hadoop/sbin/ hadoop-daemon.sh start namenode
(
5
)将主namenode节点格式化的目录拷贝到从主namenode节点上
hadoop/bin/hdfs namenode –bootstrapStandby
hadoop/sbin/hadoop-daemon.sh start namenode
(
6
) 在两个namenode节点都执行以下命令
./sbin/hadoop-daemon.sh start zkfc
(
7
) 在所有datanode节点都执行以下命令启动datanode
./sbin/hadoop-daemon.sh start datanode
(
8
)在主namenode节点启动yarn,运行yarn-start.sh命令
jps可以看到
namenode节点
[root
@master01
~]# jps
38972
JournalNode
38758
NameNode
39166
DFSZKFailoverController
37473
QuorumPeerMain
39778
ResourceManager
42620
Jps
datanode节点
[root
@slave01
~]# jps
33440
DataNode
35277
Jps
32681
QuorumPeerMain
33568
JournalNode
34231
NodeManager
hadoop-2.3.0-cdh5.1.0完全分布式集群配置及HA配置(待)的更多相关文章
- Hadoop学习之路(十二)分布式集群中HDFS系统的各种角色
NameNode 学习目标 理解 namenode 的工作机制尤其是元数据管理机制,以增强对 HDFS 工作原理的 理解,及培养 hadoop 集群运营中“性能调优”.“namenode”故障问题的分 ...
- 通过tarball形式安装HBASE Cluster(CDH5.0.2)——HBASE 真分布式集群配置
一.应该先配置好zookeeper并成功启动,否则hbase无法启动 二.配置HBASE集群 1,配置hbase-env.sh,下面是最少配置项目 [hadoop@zk1 conf]$ vim hba ...
- spark2.4.0+hadoop2.8.3全分布式集群搭建
集群环境 hadoop-2.8.3搭建详细请查看hadoop系列文章 scala-2.11.12环境请查看scala系列文章 jdk1.8.0_161 spark-2.4.0-bin-hadoop2. ...
- Hadoop上路-01_Hadoop2.3.0的分布式集群搭建
一.配置虚拟机软件 下载地址:https://www.virtualbox.org/wiki/downloads 1.虚拟机软件设定 1)进入全集设定 2)常规设定 2.Linux安装配置 1)名称类 ...
- hadoop搭建伪分布式集群(centos7+hadoop-3.1.0/2.7.7)
目录: Hadoop三种安装模式 搭建伪分布式集群准备条件 第一部分 安装前部署 1.查看虚拟机版本2.查看IP地址3.修改主机名为hadoop4.修改 /etc/hosts5.关闭防火墙6.关闭SE ...
- Hadoop 3.0完全分布式集群搭建方法(CentOS 7+Hadoop 3.2.0)
本文详细介绍搭建4个节点的完全分布式Hadoop集群的方法,Linux系统版本是CentOS 7,Hadoop版本是3.2.0,JDK版本是1.8. 一.准备环境 1. 在VMware worksta ...
- Hadoop 2.0完全分布式集群搭建方法(CentOS7+Hadoop 2.7.7)
本文详细介绍搭建4个节点的完全分布式Hadoop集群的方法,Linux系统版本是CentOS 7,Hadoop版本是2.7.7,JDK版本是1.8. 一.准备环境 1. 在VMware worksta ...
- hadoop-2.3.0-cdh5.1.0完全分布式集群配置HA配置
一.安装前准备: 操作系统:CentOS 6.5 64位操作系统 环境:jdk1.7.0_45以上,本次采用jdk-7u55-linux-x64.tar.gz master01 10.10.2.57 ...
- 分布式集群搭建(hadoop2.6.0+CentOS6.5)
摘要:之前安装过hadoop1.2.1集群,发现比较老了,后来安装cloudera(hadoop2.6.0),发现集成度比较高,想知道原生的hadoop什么样子,于是着手搭建一个伪分布式集群(三台), ...
随机推荐
- Data Structure Trie: suffix problem
http://www.geeksforgeeks.org/suffix-array-set-1-introduction/ http://www.geeksforgeeks.org/pattern-s ...
- 20145210姚思羽《网络对抗》——shellcode注入& Return-to-libc攻击深入
20145210姚思羽<网络对抗>shellcode注入&Return-to-libc攻击深入 shellcode基础知识 Shellcode是一段代码,作为数据发送给受攻击服务器 ...
- apache下配置多域名多目录的应用
引言:阿里云centos apache web服务器中配置不同域名访问不同的目录,达到类似增加虚拟主机的效果: 案例: 如有2个www.a.com ,www.b.com 域名, 访问www.a.com ...
- Drools Expression 介绍
用好Drools 中的表达式是你的规则引擎能否强大的必要条件 http://docs.jboss.org/drools/release/6.1.0.Final/drools-docs/html_sin ...
- AIM Tech Round 3 (Div. 2) A , B , C
A. Juicer time limit per test 1 second memory limit per test 256 megabytes input standard input outp ...
- 用一句SQL取出第 m 条到第 n 条记录的方法
1 --从Table 表中取出第 m 条到第 n 条的记录:(Not In 版本)2 3 SELECT TOP n-m+1 * 4 FROM Table 5 WHERE (id NOT IN (SEL ...
- node.js定时任务:node-schedule的使用
安装 npm install node-schedule 使用方法 1:确定时间 例如:2014年2月14日,15:40执行 var schedule = require("node-sch ...
- SpringBoot_05_热部署和debug
一.pom.xml配置 增加以下pom.xml配置 <!--1.spring-boot插件--> <plugin> <groupId>org.springframe ...
- 继续学习C:运算符
" / " 两整数相除,结果为整数,有一方是实数形式,结果保留小数 " % " 求余运算符要求两侧均为整型数据, 数值取余,符号与被除数一 ...
- 表达式(exp)
题目大意 给定一个逻辑表达式,求每一个数满足$\in[1,n]$的使的表达式为真的方案数. 题解 题目限制较奇怪且数据范围较小,所以可以考虑直接暴力. 考虑枚举每一个变量一共出现了$k$种数值,再枚举 ...