[LOJ#6259]「CodePlus 2017 12 月赛」白金元首与独舞
[LOJ#6259]「CodePlus 2017 12 月赛」白金元首与独舞
试题描述
到河北省 见斯大林 / 在月光下 你的背影 / 让我们一起跳舞吧
うそだよ~ 河北省怎么可能有 Stalin。
可是…… 可是如果 Stalin 把自己当作炸弹扔到地堡花园里来了呢?
怀揣着这份小小的希望,元首 Adolf 独自走进了花园。终有一天会重逢的吧,Stalin。或许是在此处,或许是在遥远的彼方。
无论如何,在此之前,好好装点一番花园,编排一段优美的舞步吧!
元首把花园分为 \(n\) 行 \(m\) 列的网格。每个格子中都可以放置一个标识,指向上、下、左、右四个方向中的任意一个。元首位于一个格子时,会按照其中标识所指的方向进入周围的格子,或者走出花园(即目的格子不在网格之内)。举个例子 —— 对于下面的放置方式,元首从第 \(3\) 行第 \(2\) 列的格子开始,会沿着以红色标出的路径走出花园;从第 \(2\) 行第 \(2\) 列的格子开始,则会在以蓝色标出的环路内不断地行走。
元首已经设计好了大部分格子的标识。元首用字符 L
、R
、U
、D
分别表示指向左、右、上、下四个方向的标识,用字符 . 表示未决定的格子。现在,元首希望将每个 .
替换为 L
、R
、U
、D
中任意一种,使得从花园中的任意一个格子出发,按照上述规则行走,都可以最终走出花园。
你需要编写程序帮助元首计算替换的不同方案数。两个方案不同当且仅当存在一个格子,使得两个方案中该格子内的标识不同。当然,由于答案可能很大,只需给出方案数除以 \(10^9 + 7\) 所得的余数即可。
输入
从标准输入读入数据。
输入的第一行包含一个正整数 \(T\) —— 测试数据的组数。接下来包含 \(T\) 组测试数据,格式如下,测试数据间没有空行。
第 \(1\) 行:两个空格分隔的正整数 \(n\)、\(m\) —— 依次表示花园被分成的行数和列数。
接下来 \(n\) 行:每行一个长度为 \(m\) 的由字符
L
、R
、U
、D
和.
组成的字符串 —— 表示花园内已经确定的格子状态。
输出
输出到标准输出。
对于每组测试数据输出一行 —— 满足条件的方案数除以 \(10^9 + 7\) 所得的余数。
输入示例
5
3 9
LLRRUDUUU
LLR.UDUUU
LLRRUDUUU
4 4
LLRR
L.LL
RR.R
LLRR
4 3
LRD
LUL
DLU
RDL
1 2
LR
2 2
..
..
输出示例
3
8
0
1
192
数据规模及约定
令 \(k\) 表示标记未确定(即包含 “.
”)的格子总数。
对于所有数据,有 \(1 \leq T \leq 10\),\(1 \leq n, m \leq 200\),\(0 \leq k \leq \min(nm, 300)\)。
题解
矩阵树定理,有向图有根树的情况。
去掉所有自环,主对角线上第 \(i\) 行第 \(i\) 列是 \(i\) 这个点的出度,剩下的是邻接矩阵取相反数。然后求的是删掉根节点所在行列的余子式的行列式。
注意这个求的是指向根的树形图
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cctype>
#include <algorithm>
using namespace std;
#define rep(i, s, t) for(int i = (s); i <= (t); i++)
#define dwn(i, s, t) for(int i = (s); i >= (t); i--)
int read() {
int x = 0, f = 1; char c = getchar();
while(!isdigit(c)){ if(c == '-') f = -1; c = getchar(); }
while(isdigit(c)){ x = x * 10 + c - '0'; c = getchar(); }
return x * f;
}
#define maxr 210
#define maxnode 40010
#define maxn 310
#define MOD 1000000007
#define LL long long
int r, c;
char Map[maxr][maxr];
struct Graph {
int n, m, head[maxnode], nxt[maxnode], to[maxnode];
Graph() {}
void clear() {
m = 0; memset(head, 0, sizeof(head));
return ;
}
void AddEdge(int a, int b) {
to[++m] = b; nxt[m] = head[a]; head[a] = m;
return ;
}
} G;
int id(int i, int j) { return (i - 1) * c + j; }
int vis[maxnode];
bool dfs(int u) {
if(vis[u] == 2) return 0;
if(vis[u]) return 1;
vis[u] = 2;
for(int e = G.head[u]; e; e = G.nxt[e]) if(!dfs(G.to[e])) return 0;
vis[u] = 1;
return 1;
}
int fa[maxnode];
int findset(int x) { return x == fa[x] ? x : fa[x] = findset(fa[x]); }
int n, trid[maxnode];
int ID(int u) { return trid[u] ? trid[u] : trid[u] = ++n; }
int A[maxn][maxn], tA[maxn][maxn];
void MatAddEdge(int a, int b) {
if(a == b) return ;
tA[a][a]++; tA[a][b]--;
return ;
}
void elim(int *a, int *b, int tar) {
if(!b[tar]) return ;
int rate = a[tar] / b[tar];
rep(i, 1, n) a[i] = ((LL)a[i] - (LL)b[i] * rate % MOD + MOD) % MOD;
elim(b, a, tar);
return ;
}
int solve() {
n--;
int sgn = 1;
rep(i, 1, n) rep(j, 1, n) if(A[i][j] < 0) A[i][j] += MOD;
rep(i, 1, n)
rep(j, i + 1, n) if(A[j][i]) {
elim(A[i], A[j], i);
if(!A[i][i]) swap(A[i], A[j]), sgn = -sgn;
}
int sum = 1;
rep(i, 1, n) sum = (LL)sum * A[i][i] % MOD;
return (sum * sgn + MOD) % MOD;
}
int main() {
int T = read();
while(T--) {
r = read(); c = read(); G.n = r * c + 1; G.clear();
rep(i, 1, G.n) fa[i] = i;
rep(i, 1, r) scanf("%s", Map[i] + 1);
rep(i, 1, r) rep(j, 1, c) if(isalpha(Map[i][j])) {
if(Map[i][j] == 'D') {
G.AddEdge(id(i, j), i < r ? id(i + 1, j) : G.n);
int u = findset(id(i, j)), v = findset(i < r ? id(i + 1, j) : G.n);
if(u != v) fa[v] = u;
}
if(Map[i][j] == 'U') {
G.AddEdge(id(i, j), i > 1 ? id(i - 1, j) : G.n);
int u = findset(id(i, j)), v = findset(i > 1 ? id(i - 1, j) : G.n);
if(u != v) fa[v] = u;
}
if(Map[i][j] == 'R') {
G.AddEdge(id(i, j), j < c ? id(i, j + 1) : G.n);
int u = findset(id(i, j)), v = findset(j < c ? id(i, j + 1) : G.n);
if(u != v) fa[v] = u;
}
if(Map[i][j] == 'L') {
G.AddEdge(id(i, j), j > 1 ? id(i, j - 1) : G.n);
int u = findset(id(i, j)), v = findset(j > 1 ? id(i, j - 1) : G.n);
if(u != v) fa[v] = u;
}
}
memset(vis, 0, sizeof(vis));
bool ok = 1;
rep(i, 1, G.n) if(!vis[i] && !dfs(i)){ puts("0"); ok = 0; break; }
if(!ok) continue;
memset(trid, 0, sizeof(trid)); n = 0;
memset(tA, 0, sizeof(tA));
rep(i, 1, r) rep(j, 1, c) if(Map[i][j] == '.') {
int u = findset(id(i, j));
MatAddEdge(ID(u), ID(findset(i < r ? id(i + 1, j) : G.n)));
MatAddEdge(ID(u), ID(findset(i > 1 ? id(i - 1, j) : G.n)));
MatAddEdge(ID(u), ID(findset(j < c ? id(i, j + 1) : G.n)));
MatAddEdge(ID(u), ID(findset(j > 1 ? id(i, j - 1) : G.n)));
}
int ci = 0, cj = 0;
rep(i, 1, n) if(i != ID(findset(G.n))) {
ci++;
cj = 0;
rep(j, 1, n) if(j != ID(findset(G.n))) A[ci][++cj] = tA[i][j];
}
printf("%d\n", solve());
}
return 0;
}
[LOJ#6259]「CodePlus 2017 12 月赛」白金元首与独舞的更多相关文章
- 【LibreOJ】#6259. 「CodePlus 2017 12 月赛」白金元首与独舞
[题目]给定n行m列的矩阵,每个位置有一个指示方向(上下左右)或没有指示方向(任意选择),要求给未定格(没有指示方向的位置)确定方向,使得从任意一个开始走都可以都出矩阵,求方案数.n,m<=20 ...
- 「CodePlus 2017 12 月赛」白金元首与独舞
description 题面 data range \[ 1 \leq T \leq 10, 1 \leq n, m \leq 200 , 0 \leq k \leq \min(nm, 300)\] ...
- 走进矩阵树定理--「CodePlus 2017 12 月赛」白金元首与独舞
n,m<=200,n*m的方阵,有ULRD表示在这个格子时下一步要走到哪里,有一些待决策的格子用.表示,可以填ULRD任意一个,问有多少种填法使得从每个格子出发都能走出这个方阵,答案取模.保证未 ...
- loj6259「CodePlus 2017 12 月赛」白金元首与独舞
分析 我们将没连的点连向周围四个点 其余的按照给定的方向连 我们将所有连出去的位置统一连到0点上 再以0作为树根 于是就将问题转化为了有向图内向树计数 代码 #include<iostream& ...
- loj #6250. 「CodePlus 2017 11 月赛」找爸爸
#6250. 「CodePlus 2017 11 月赛」找爸爸 题目描述 小 A 最近一直在找自己的爸爸,用什么办法呢,就是 DNA 比对. 小 A 有一套自己的 DNA 序列比较方法,其最终目标是最 ...
- [LOJ 6249]「CodePlus 2017 11 月赛」汀博尔
Description 有 n 棵树,初始时每棵树的高度为 H_i,第 i 棵树每月都会长高 A_i.现在有个木料长度总量为 S 的订单,客户要求每块木料的长度不能小于 L,而且木料必须是整棵树(即不 ...
- [LOJ 6248]「CodePlus 2017 11 月赛」晨跑
Description “无体育,不清华”.“每天锻炼一小时,健康工作五十年,幸福生活一辈子” 在清华,体育运动绝对是同学们生活中不可或缺的一部分.为了响应学校的号召,模范好学生王队长决定坚持晨跑.不 ...
- 「CodePlus 2017 12 月赛」火锅盛宴(模拟+树状数组)
1A,拿来练手的好题 用一个优先队列按煮熟时间从小到大排序,被煮熟了就弹出来. 用n个vector维护每种食物的煮熟时间,显然是有序的. 用树状数组维护每种煮熟食物的数量. 每次操作前把优先队列里煮熟 ...
- 「CodePlus 2017 12 月赛」可做题2(矩阵快速幂+exgcd+二分)
昨天这题死活调不出来结果是一个地方没取模,凉凉. 首先有个一眼就能看出来的规律... 斐波那契数列满足$a_1, a_2, a_1+a_2, a_1+2a_2, 2a_1+3a_2, 3a_1+5a_ ...
随机推荐
- 远程桌面连接失败,提示CredSSP加密Oracel修正问题解决
今天远程桌面的时候失败了,出现以下提示 于是上网找解决办法,经过测试,该方法是可行的. 首先,在控制台中输入regedit,打开注册表
- ios 苹果内购订单验证 --- nodejs实现
实现代码 function IosPlayVerify(data,orderid,cb) { itunesPost(data,function (error,responseData) { if (e ...
- mount加载虚拟机增强工具步骤
1.创建一个挂载目录sudo mkdir /mnt/cdrom 2.在C:\Program Files\Oracle\VirtualBox\VBoxGuestAdditions.iso中添加该文件 3 ...
- python——闰年的判断
写一个程序,判断给定年份是否为闰年. 这样定义闰年的:能被4整除但不能被100整除,或者能被400整除都是闰年. while(1): year = input("请输入一个年份,让我判断一下 ...
- [Hdu4825]Xor Sum(01字典树)
Description Zeus 和 Prometheus 做了一个游戏,Prometheus 给 Zeus 一个集合,集合中包含了N个正整数,随后 Prometheus 将向 Zeus 发起M次询问 ...
- Android 中的一些特殊目录与文件
用作命令的二进制文件位于/system/bin/与/system/xbin/下 应用数据位于/data/data/, 原始安装文件位于/data/app/(Play商店中非免费应用位于/data/ap ...
- io编程,python
IO在计算机中指Input/Output,也就是输入和输出. Stream(流): 可以把流想象成一个水管,数据就是水管里的水,但是只能单向流动.Input Stream就是数据从外面(磁盘.网络)流 ...
- 1,版本控制git--仓库管理
再开始这个话题之前,让我想起了一件很痛苦的事情,在我大学写毕业论文的时候,我当时的文件是这样保存的 毕业论文_初稿.doc 毕业论文_修改1.doc 毕业论文_修改2.doc 毕业论文_修改3.d ...
- 关于Android SDK无法更新的解决办法
最新摆弄PhoneGap打包,所以需要安卓的环境,配置后,sdk更新实在是在慢了,上网找了一下,可能被强了,所有总结如下办法,最后弄好了,跟大家分享一下 具体步骤:1:打开SDK Manager.ex ...
- eclipse、myeclipse 反编译插件 轻松查看源代码
java反编译插件:Eclipse Class Decompiler,能够很方便的使用本插件查看类库源码,以及采用本插件进行Debug调试. eclipse中安装Eclipse Class Decom ...