http://www.cnblogs.com/cbscan/archive/2012/01/10/2318482.html

http://blog.csdn.net/fcryuuhou/article/details/8568194

std::move是一个用于提示优化的函数,过去的c++98中,由于无法将作为右值的临时变量从左值当中区别出来,所以程序运行时有大量临时变量白白的创建后又立刻销毁,其中又尤其是返回字符串std::string的函数存在最大的浪费。

比如:

1 std::string fileContent = “oldContent”;
2 s = readFileContent(fileName);

因为并不是所有情况下,C++编译器都能进行返回值优化,所以,向上面的例子中,往往会创建多个字符串。readFileContent如果没有内部状态,那么,它的返回值多半是std::string(const std::string的做法不再被推荐了),而不是const std::string&。这是一个浪费,函数的返回值被拷贝到s中后,栈上的临时对象就被销毁了。

在C++11中,编码者可以主动提示编译器,readFileContent返回的对象是临时的,可以被挪作他用:std::move。

将上面的例子改成:

1 std::string fileContent = “oldContent”;
2 s = std::move(readFileContent(fileName));

后,对象s在被赋值的时候,方法std::string::operator =(std::string&&)会被调用,符号&&告诉std::string类的编写者,传入的参数是一个临时对象,可以挪用其数据,于是std::string::operator =(std::string&&)的实现代码中,会置空形参,同时将原本保存在中形参中的数据移动到自身。

不光是临时变量,只要是你认为不再需要的数据,都可以考虑用std::move移动。

比较有名的std::move用法是在swap中:

 
1 template<typename T>
2 void swap(T& a, T& b)
3 {
4 T t(std::move(a)); // a为空,t占有a的初始数据
5 a = std::move(b); // b为空, a占有b的初始数据
6 b = std::move(t); // t为空,b占有a的初始数据
7 }
 

总之,std::move是为性能而生的,正式因为了有了这个主动报告废弃物的设施,所以C++11中的STL性能大幅提升,即使C++用户仍然按找旧有的方式来编码,仍然能因中新版STL等标准库的强化中收益。

std::forward是用于模板编程中的,如果不需要编写通用的模板类和函数,可能不怎么用的上它。

要认识它的作用,需要知道C++中的几条规则:(这里有篇挺好的文章:http://blog.csdn.net/zwvista/article/details/6848582,但似乎因标准的更新,其中的规则已不完全成立了)

1. 引用折叠规则:

X& + & => X&
X&& + & => X&
X& + && => X&
X&& + && => X&&

2. 对于模板函数中的形参声明T&&(这里的模板参数T,最终推演的结果可能不是一个纯类型,它可能还会带有引用/常量修饰符,如,T推演为const int时,实际形参为const int &&),会有如下规则:

如果调用函数时的实参为U&(这里的U可能有const/volatile修饰,但没有左/右引用修饰了),那么T推演为U&,显然根据上面的引用折叠规则,U& &&=>U&。

如果调用实参为U&&,虽然将T推导为U&&和U都能满足折叠规则(U&& &&=> U&&且U &&=>U&&),但标准规定,这里选择将T推演为U而非U&&。

总结一下第2条规则:当形参声明为T&&时,对于实参U&,T被推演为U&;当实参是U&&时,T被推演为U。当然,T和U具有相同的const/volatile属性。

3.这点很重要,也是上面zwvista的文章中没有提到的:形参T&& t中的变量t,始终是左值引用,即使调用函数的实参是右值引用也不例外。可以这么理解,本来,左值和右值概念的本质区别就是,左值是用户显示声明或分配内存的变量,能够直接用变量名访问,而右值主要是临时变量。当一个临时变量传入形参为T&& t的模板函数时,T被推演为U,参数t所引用的临时变量因为开始能够被据名访问了,所以它变成了左值。这也就是std::forward存在的原因!当你以为实参是右值所以t也应该是右值时,它跟你开了个玩笑,它是左值!如果你要进一步调用的函数会根据左右值引用性来进行不同操作,那么你在将t传给其他函数时,应该先用std::forward恢复t的本来引用性,恢复的依据是模板参数T的推演结果。虽然t的右值引用行会退化,变成左值引用,但根据实参的左右引用性不同,T会被分别推演为U&和U,这就是依据!因此传给std::forward的两个参数一个都不能少:std::forward<T>(t)。

再来,讨论一下,一个模板函数如果要保留参数的左右值引用性,为什么应该声明为T&&:

如果声明函数f(T t):实参会直接进行值传递,失去了引用性。

如果声明函数f(T &t): 根据引用折叠法则,无论T是U&还是U&&,T&的折叠结果都只会是U&,即,这个声明不能用于匹配右值引用实参。

如果声明函数f(T &&t): 如果T为U&,T&&的结果是U&,可以匹配左值实参;如果T为U&&,T&&的结果是U&&,可以匹配右值实参。又因为T的cv性和U相同,所以这种声明能够保留实参的类型信息。

先来看一组帮助类:

 
1 template<typename T> struct TypeName { static const char *get(){ return "Type"; } };
2 template<typename T> struct TypeName<const T> { static const char *get(){ return "const Type"; } };
3 template<typename T> struct TypeName<T&> { static const char *get(){ return "Type&"; } };
4 template<typename T> struct TypeName<const T&> { static const char *get(){ return "const Type&"; } };
5 template<typename T> struct TypeName<T&&> { static const char *get(){ return "Type&&"; } };
6 template<typename T> struct TypeName<const T&&> { static const char *get(){ return "const Type&&"; } };
 

在模板函数内部将模板参数T传给TypeName,就可以访问T的类型字符串:TypeName<T>::get()。

再一个帮助函数,用于打印一个表达式的类型:

1 template<typename T>
2 void printValType(T &&val)
3 {
4 cout << TypeName<T&&>::get() << endl;
5 }

注意3条规则在这个模板函数上的应用。规则1,解释了T&& val的声明足以保留实参的类型信息。规则2,说明了,当实参是string&时,T就是string&;当实参是const string&&时,T就是const string(而非const string&&)。规则3,强调,无论实参是string&还是string&&,形参val的类型都是string&!

注意TypeName<T&&>的写法,因为T只能为U&或者U,显然T&&可以根据折叠法则还原为实参类型U&和U&&。

这里是常见的const/左右引用组合的情形:

1 class A{}; // 测试类
2 A& lRefA() { static A a; return a;} // 左值
3 const A& clRefA() { static A a; return a;} // 常左值
4 A rRefA() { return A(); } // 右值
5 const A crRefA() { return A(); } // 常右值

测试一下上面的表达式类型:

1 printValType(lRefA());
2 printValType(clRefA());
3 printValType(rRefA());
4 printValType(crRefA());

输出依次是: Type&,const Type&,Type&&,const Type&&。

现在正式来探讨std::forward的实现。

回顾一下使用std::forward的原因:由于声明为f(T&& t)的模板函数的形参t会失去右值引用性质,所以在将t传给更深层函数前,可能会需要回复t的正确引用行,当然,修改t的引用性办不到,但根据t返回另一个引用还是可以的。恰好,上面的函数printValType是一个会根据实参类型不同,作出不同反映的函数,所以可以把它作为f的内层函数,来检测f有没有正确的修正t的引用行。

 
 1 template<typename T>
2 void f(T &&a)
3 {
4 printValType(a);
5 }
6
7 int main()
8 {
9 f(lRefA());
10 f(clRefA());
11 f(rRefA());
12 f(crRefA());
13 }
 

输出:Type&,const Type&,Type&,const Type&。

可见后两个输出错了,这正是前面规则3描述的,当实参是右值引用时,虽然T被推演为U,但是参数a退化成了左值引用。

直接应用std::forward:

1 template<typename T>
2 void f(T &&a)
3 {
4 printValType(std::forward<T>(a));
5 }

输出:Type&,const Type&,Type&&,const Type&&。

输出正确了,这就是std::forward的作用啊。如果更深层的函数也需要完整的引用信息,如这里的printValType,那就应该在传递形参前先std::forward!

在编写自己的forward函数之前,先来尝试直接强制转化参数a:

 template<typename T>
void f(T &&a)
{
printValType((T&&)a);
}

输出:Type&,const Type&,Type&&,const Type&&。

正确!因为不管T被推演为U&还是U,只要T&&肯定能还原为U&和U&&。

考虑下自己的forward函数应该怎么写:

因为在forward的调用方中,形参已经丢失了右值引用信息,唯一的参考依据是T,要根据T还原为正确的参数,得T&&,因此,强制转换和返回类型都是T&&了,当然,forward还必须被以forward<T>()的方式显示指定模板类型,这样才能保证forward的模板参数T和上层函数f的T是相同类型。首先:

 template<typename T>
T&& forward(... a)
{
return (T&&)a;
}

调用方f一定得显示指定类型forward<T>。

形参怎么写?形参a的类型由T构成,而且forward的实参一定是左值(暂时不考虑forward(std::string())的使用方法),也就是说,无论T是U&还是U,形参a的类型一定都得是U&,才能和实参匹配,所以,结果是:

 template<typename T>
T&& forward(T& a)
{
return (T&&)a;
}

测试,输出:Type&,const Type&,Type&&,const Type&&。
正确!

再试下,如果f调用forward的时候,使用forward(a)的方式,没有显示指定模板类型会怎么样:

 template<typename T>
void f(T &&a)
{
printValType(forward(a));
}

输出:T&&,const Type&&,Type&&,const Type&&。

错了。分析下,因为实参始终是左值,所以forward的形参T& a中,T就被推演为U,因此(T&&)a也就是(U&&)a所以结果错误。

为了避免用户使用forward(a),因此应该禁用forward的自动模板参数推演功能!可以借助std::identity,另外,将(T&&)换成static_cast<T&&>,规范一下:

 template<typename T>
T&& forward(typename std::identity<T>::type& a)
{
return static_cast<T&&>(a);
}

上面讲的是针对T为U&或U,而实参始终为左值的情况,这是常见的情形;不过也有实参为右值的情况,还需要改进上面这个forward,但我这里就不写了。

这是我手里的gcc4.5.2的forward实现:

 
    /// forward (as per N2835)
/// Forward lvalues as rvalues.
template<typename _Tp>
inline typename enable_if<!is_lvalue_reference<_Tp>::value, _Tp&&>::type
forward(typename std::identity<_Tp>::type& __t)
{ return static_cast<_Tp&&>(__t); } /// Forward rvalues as rvalues.
template<typename _Tp>
inline typename enable_if<!is_lvalue_reference<_Tp>::value, _Tp&&>::type
forward(typename std::identity<_Tp>::type&& __t)
{ return static_cast<_Tp&&>(__t); } // Forward lvalues as lvalues.
template<typename _Tp>
inline typename enable_if<is_lvalue_reference<_Tp>::value, _Tp>::type
forward(typename std::identity<_Tp>::type __t)
{ return __t; } // Prevent forwarding rvalues as const lvalues.
template<typename _Tp>
inline typename enable_if<is_lvalue_reference<_Tp>::value, _Tp>::type
forward(typename std::remove_reference<_Tp>::type&& __t) = delete;
 

第1/3版本就相当于我之前的实现,而版本2/4是实参为右值的情况,至于后者这种取舍的原因,还得去自己研究下使用场合和文档了。

我手里的vc2010实现的forward和我之前的实现相同,显然还不够,不过vc2010本来对标准也就还支持得少...

[C/C++]关于C++11中的std::move和std::forward的更多相关文章

  1. C++11中std::move、std::forward、左右值引用、移动构造函数的测试

    关于C++11新特性之std::move.std::forward.左右值引用网上资料已经很多了,我主要针对测试性能做一个测试,梳理一下这些逻辑,首先,左值比较熟悉,右值就是临时变量,意味着使用一次就 ...

  2. C++11 std::move和std::forward

    下文先从C++11引入的几个规则,如引用折叠.右值引用的特殊类型推断规则.static_cast的扩展功能说起,然后通过例子解析std::move和std::forward的推导解析过程,说明std: ...

  3. item 23: 理解std::move和std::forward

    本文翻译自<effective modern C++>,由于水平有限,故无法保证翻译完全正确,欢迎指出错误.谢谢! 博客已经迁移到这里啦 根据std::move和std::forward不 ...

  4. 关于C++11中的std::move和std::forward

    std::move是一个用于提示优化的函数,过去的c++98中,由于无法将作为右值的临时变量从左值当中区别出来,所以程序运行时有大量临时变量白白的创建后又立刻销毁,其中又尤其是返回字符串std::st ...

  5. 透彻理解C++11新特性:右值引用、std::move、std::forward

    目录 浅拷贝.深拷贝 左值.右值 右值引用类型 强转右值 std::move 重新审视右值引用 右值引用类型和右值的关系 函数参数传递 函数返还值传递 万能引用 引用折叠 完美转发 std::forw ...

  6. std::move()和std::forward()

    std::move(t)负责将t的类型转换为右值引用,这种功能很有用,可以用在swap中,也可以用来解决完美转发. std::move()的源码如下 template<class _Ty> ...

  7. C++0x,std::move和std::forward解析

    1.std::move 1.1std::move是如何定义的 template<typename _Tp> constexpr typename std::remove_reference ...

  8. C++11中std::move的使用

    std::move is used to indicate that an object t may be "moved from", i.e. allowing the effi ...

  9. C++11中std::forward的使用 (转)

    std::forward argument: Returns an rvalue reference to arg if arg is not an lvalue reference; If arg ...

随机推荐

  1. 【java】线程安全的整型类AtomicInteger

    一.遇见AtomicInteger 在看项目代码的时候看到这个类,发现其功能很简单,就是一个整型变量的类型,出于好奇看了其类定义. 该类位于java.util.concurrent.atomic下,在 ...

  2. Xamarin.Forms教程下载安装Visual Studio 2015

    Xamarin.Forms教程下载安装Visual Studio 2015 下载安装Visual Studio 2015 Visual Studio 2015是微软提供的IDE,其中集成了Window ...

  3. poj 1050(矩阵求和问题dp)

    To the Max Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 44765   Accepted: 23700 Desc ...

  4. Python生成随机数的一些函数

    头文件: import random 1.生成一个随机浮点数,范围是0-1: print random.random() 2.生成指定范围内的随机浮点数: print random.uniform(a ...

  5. [BZOJ3990][SDOI2015]排序(DFS)

    3990: [SDOI2015]排序 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 902  Solved: 463[Submit][Status][ ...

  6. 【最优比率生成树】poj2728 Desert King

    最优比率生成树教程见http://blog.csdn.net/sdj222555/article/details/7490797 个人觉得很明白易懂,但他写的代码略囧. 模板题,但是必须Prim,不能 ...

  7. 【模板(们)】noip前热身练习(更新中...)

    分块+莫队 #include<cstdio> #include<cstring> #include<algorithm> using namespace std; ...

  8. 【2-SAT(tarjan)】BZOJ1997-[Hnoi2010]Planar

    [题目大意]给出一张存在哈密顿回路的无向图,判断是否是平面图.[思路]首先平面图的一个性质:边数<=点数*3-6因为存在哈密顿回路,可以将回路看作是一个圆,考量不再哈密顿回路中的边.如果两天边相 ...

  9. 协程和IO模型

    协程 1.什么是协程 单线程实现并发 在应用程序里控制多个任务的切换+保存状态 优点: 应用程序级别速度要远远高于操作系统的切换 缺点: 多个任务一旦有一个阻塞没有切,整个线程都阻塞在原地 该线程内的 ...

  10. TZOJ 数据结构实验--循环队列

    描述 创建一个循环队列,队列元素个数为4.能够实现队列的初始化.入队列.出队列.求队列长度等操作. 循环队列数据类型定义如下: typedef struct{ int data[Max];    in ...