莫比乌斯反演+枚举除法的取值
第二种形式:
f(n)表示gcd(x,y)=n的数量。
F(n)表示gcd(x,y)是n的倍数的数量。
/**
题目:Problem b
链接:https://vjudge.net/contest/178455#problem/G
题意:对于给出的 n 个询问,每次求有多少个数对 (x,y) ,
满足 a ≤ x ≤ b , c ≤ y ≤ d ,且 gcd(x,y) = k , gcd(x,y) 函数为 x 和 y 的最大公约数。
1≤n≤50000,1≤a≤b≤50000,1≤c≤d≤50000,1≤k≤50000
思路:
首先容斥:ans = solve(b,d,k)-solve(b,c-1,k)-solve(a-1,d,k)+solve(a-1,c-1,k); solve(n,m,k)表示x在[1,n],y在[1,m] gcd(x,y)==k的对数。 定义:
f(n)表示gcd(x,y)=n的数量。
F(n)表示gcd(x,y)是n的倍数的数量。 如何求F(n)? F(n) = (x/n) * (y/n); 要加括号,因为这是取整之后的乘积 根据定义用第二种形式:f(n) = sigma(mu[d/n]*F(d)) (n|d) 这样只要枚举k的倍数一直到min(n,m)就可以了。可是如果k=1,那么枚举一次就是O(N);总复杂度为O(N*N); 实际上可以继续优化; solve(n,m,k)等价于solve(n/k,m/k)表示x在[1,n/k],y在[1,m/k],gcd(x,y)==1的对数。 由于x/i,x/(i+1),x/(i+2)...x/(i+t)存在连续相同的结果,也就是这段区间[l,r]内(n/i)*(m/i)的结果是相同的; 这样i在[l,r] 范围内的(n/i)*(m/i)*mu[i];就等价于 (n/i)*(m/i)*(sum[r]-sum[l-1]); sum表示mu的前缀和。 所以这里可以快速处理。复杂度为sqrt(N); 总时间复杂度为N*sqrt(N); 参考:https://wenku.baidu.com/view/fbec9c63ba1aa8114431d9ac.html */
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <set>
#include <iostream>
#include <vector>
#include <map>
using namespace std;
typedef long long LL;
#define ms(x,y) memset(x,y,sizeof x)
typedef pair<int, int> P;
const LL INF = 1e10;
const int mod = 1e9 + ;
const int maxn = 5e4 + ;
int prime[maxn], tot, not_prime[maxn];
int mu[maxn], sum[maxn];
void init()
{
mu[] = ;
tot = ;
for(int i = ; i < maxn; i++){
if(!not_prime[i]){
prime[++tot] = i;
mu[i] = -;
}
for(int j = ; prime[j]*i<maxn; j++){
not_prime[prime[j]*i] = ;
if(i%prime[j]==){
mu[prime[j]*i] = ;
break;
}
mu[prime[j]*i] = -mu[i];
}
}
for(int i = ; i < maxn; i++) sum[i] = sum[i-]+mu[i];
}
LL solve(int n,int m)
{
LL ans = ;
if(n>m) swap(n,m);
int last;
for(int i = ; i <= n; i=last+){
last = min(n/(n/i),m/(m/i));
ans += (LL)(sum[last]-sum[i-])*(n/i)*(m/i);
}
return ans;
}
int main()
{
//freopen("in.txt","r",stdin);
int T;
int a, b, c, d, k;
init();
cin>>T;
while(T--)
{
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
printf("%lld\n",solve(b/k,d/k)-solve(b/k,(c-)/k)-solve((a-)/k,d/k)+solve((a-)/k,(c-)/k));
}
return ;
}

Problem b 莫比乌斯反演+枚举除法的取值的更多相关文章

  1. hdu1695 GCD 莫比乌斯反演做法+枚举除法的取值 (5,7),(7,5)看做同一对

    /** 题目:hdu1695 GCD 链接:http://acm.hdu.edu.cn/status.php 题意:对于给出的 n 个询问,每次求有多少个数对 (x,y) , 满足 a ≤ x ≤ b ...

  2. [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明)

    [BZOJ 2301] [HAOI 2011] Problem b (莫比乌斯反演)(有证明) 题面 T组询问,每次给出a,b,c,d,k,求\(\sum _{i=a}^b\sum _{j=c}^d[ ...

  3. Bzoj 2301: [HAOI2011]Problem b(莫比乌斯反演+除法分块)

    2301: [HAOI2011]Problem b Time Limit: 50 Sec Memory Limit: 256 MB Description 对于给出的n个询问,每次求有多少个数对(x, ...

  4. BZOJ2301: [HAOI2011]Problem b[莫比乌斯反演 容斥原理]【学习笔记】

    2301: [HAOI2011]Problem b Time Limit: 50 Sec  Memory Limit: 256 MBSubmit: 4032  Solved: 1817[Submit] ...

  5. [BZOJ1101&BZOJ2301][POI2007]Zap [HAOI2011]Problem b|莫比乌斯反演

    对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d. 我们可以令F[n]=使得n|(x,y)的数对(x,y)个数 这个很容易得到,只需要让x, ...

  6. P2522 [HAOI2011]Problem b (莫比乌斯反演)

    题目 P2522 [HAOI2011]Problem b 解析: 具体推导过程同P3455 [POI2007]ZAP-Queries 不同的是,这个题求的是\(\sum_{i=a}^b\sum_{j= ...

  7. [bzoj2301][HAOI2011]Problem B —— 莫比乌斯反演+容斥原理

    题意 给定a, b, c, d, k,求出: \[\sum_{i=a}^b\sum_{j=c}^d[gcd(i, j) = k]\] 题解 为方便表述,我们设 \[calc(\alpha, \beta ...

  8. [bzoj2301]Problem b莫比乌斯反演+分块优化

    题意: $\sum\limits_{\begin{array}{*{20}{c}}{a < = x < = b}\\{c < = y < = d}\end{array}} {\ ...

  9. 【51nod1678】lyk与gcd(莫比乌斯反演+枚举因数)

    点此看题面 大致题意: 一个长度为\(n\)的数组,实现两种操作:单点修改,给定\(i\)求\(\sum_{j=1}^na_j[gcd(i,j)=1]\). 莫比乌斯反演 考虑推一推询问操作的式子: ...

随机推荐

  1. LeetCode56:Jump Game

    Given an array of non-negative integers, you are initially positioned at the first index of the arra ...

  2. Android布局属性集合

    <!-- android:id  —— 为控件指定相应的ID android:text —— 指定控件当中显示的文字,需要注意的是,这里尽量使用strings.xml文件当中的字符串 andro ...

  3. HTML学习笔记(五)

    1.       Javascript是一种脚本语言,它的作用是提供用户交互.动态更改内容.数据验证. 2.       我们使用script标签将javascript的语句嵌入到html文档中. 3 ...

  4. iOS工程中的info.plist文件的完整研究

    原地址:http://blog.sina.com.cn/s/blog_947c4a9f0100zf41.html 们建立一个工程后,会在Supporting files下面看到一个"工程名- ...

  5. 数据库连接dbcp$c3p0

    <?xml version="1.0" encoding="UTF-8"?> <c3p0-config> <!-- 这是默认配置信 ...

  6. Vue 组件通信(子组件向父组件传递数据)

    1.自定义事件 <!DOCTYPE html> <html lang="zh"> <head> <meta charset="U ...

  7. apache相关配置

    PHP配置 php.ini-development:开发时的php.ini配置 php.ini-production:项目运行时的php.ini配置 复制php.ini-development文件到C ...

  8. CodeForces 390E Inna and Large Sweet Matrix(树状数组改段求段)

    树状数组仅仅能实现线段树区间改动和区间查询的功能,能够取代不须要lazy tag的线段树.且代码量和常数较小 首先定义一个数组 int c[N]; 并清空 memset(c, 0, sizeof c) ...

  9. C/C++ 编程计算2的100万次方(m的n次方),超长结果输出文件

    #include <iostream> #include <stdio.h> #include <stdlib.h> #include <string> ...

  10. 域对象的引用,ActionContext 和ServletActionContext类的使用

    ActionContext 获取 域引用的map ServletActionContext获取具体域对象 //域范围 ActionContext ac = ActionContext.getConte ...