最大M子段和

N个整数组成的序列a[1],a[2],a[3],…,a[n],将这N个数划分为互不相交的M个子段,并且这M个子段的和是最大的。如果M >= N个数中正数的个数,那么输出所有正数的和。
例如:-2 11 -4 13 -5 6 -2,分为2段,11 -4 13一段,6一段,和为26。
Input
第1行:2个数N和M,中间用空格分隔。N为整数的个数,M为划分为多少段。(2 <= N , M <= 5000)
第2 - N+1行:N个整数 (-10^9 <= a[i] <= 10^9)
Output
输出这个最大和
Input示例
7 2
-2
11
-4
13
-5
6
-2
Output示例
26
【分析】dp[j][i]表示从1~i分成j份获得的最大值。
#include <bits/stdc++.h>
#define inf 0x3f3f3f3f
#define met(a,b) memset(a,b,sizeof a)
#define pb push_back
#define mp make_pair
#define rep(i,l,r) for(int i=(l);i<=(r);++i)
#define inf 0x3f3f3f3f
using namespace std;
typedef long long ll;
const int N = 1e6+;;
const int M = ;
const int mod = 1e9+;
const int mo=;
const double pi= acos(-1.0);
typedef pair<int,int>pii;
int n,m;
int a[N];
ll dp[][N];
int main(){
scanf("%d%d",&n,&m);
met(dp,);
ll sum=;
int cnt=;
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
if(a[i]>)sum+=a[i],cnt++;
}
if(m>=cnt)return *printf("%lld\n",sum);
int now=;
for(int i=;i<=m;i++){
ll mx=dp[now^][i-];
dp[now][i]=mx+a[i];
for(int j=i+;j<=n-m+i;j++){
mx=max(mx,dp[now^][j-]);
dp[now][j]=max(mx,dp[now][j-])+a[j];
}
now^=;
}
now^=;
ll ans=-;
for(int i=m;i<=n;i++)ans=max(ans,dp[now][i]);
printf("%lld\n",ans); return ;
}

51nod 1052 (dp)的更多相关文章

  1. 51nod 1201 (dp)

    整数划分 将N分为若干个不同整数的和,有多少种不同的划分方式,例如:n = 6,{6} {1,5} {2,4} {1,2,3},共4种.由于数据较大,输出Mod 10^9 + 7的结果即可.   In ...

  2. LightOJ 1033 Generating Palindromes(dp)

    LightOJ 1033  Generating Palindromes(dp) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid= ...

  3. lightOJ 1047 Neighbor House (DP)

    lightOJ 1047   Neighbor House (DP) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730# ...

  4. UVA11125 - Arrange Some Marbles(dp)

    UVA11125 - Arrange Some Marbles(dp) option=com_onlinejudge&Itemid=8&category=24&page=sho ...

  5. 【POJ 3071】 Football(DP)

    [POJ 3071] Football(DP) Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 4350   Accepted ...

  6. 初探动态规划(DP)

    学习qzz的命名,来写一篇关于动态规划(dp)的入门博客. 动态规划应该算是一个入门oier的坑,动态规划的抽象即神奇之处,让很多萌新 萌比. 写这篇博客的目标,就是想要用一些容易理解的方式,讲解入门 ...

  7. Tour(dp)

    Tour(dp) 给定平面上n(n<=1000)个点的坐标(按照x递增的顺序),各点x坐标不同,且均为正整数.请设计一条路线,从最左边的点出发,走到最右边的点后再返回,要求除了最左点和最右点之外 ...

  8. 2017百度之星资格赛 1003:度度熊与邪恶大魔王(DP)

    .navbar-nav > li.active > a { background-image: none; background-color: #058; } .navbar-invers ...

  9. Leetcode之动态规划(DP)专题-详解983. 最低票价(Minimum Cost For Tickets)

    Leetcode之动态规划(DP)专题-983. 最低票价(Minimum Cost For Tickets) 在一个火车旅行很受欢迎的国度,你提前一年计划了一些火车旅行.在接下来的一年里,你要旅行的 ...

随机推荐

  1. MySQL 5.7 跟踪优化器

    Welcome to the MySQL monitor.  Commands end with ; or \g.Your MySQL connection id is 5Server version ...

  2. 【NOIP】2016 换教室

    [算法]期望DP+floyd [题解]用floyd预处理最短距离. 注意重边与自环——图论双毒!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! QAQ 然后搞清楚方案和概率的问 ...

  3. 贿赂囚犯 Bribe the prisoners ( 动态规划+剪枝)

    一个监狱里有P个并排着的牢房,从左往右一次编号为1,2,-,P.最初所有牢房里面都住着一个囚犯.现在要释放一些囚犯.如果释放某个牢房里的囚犯,必须要贿赂两边所有的囚犯一个金币,直到监狱的两端或者空牢房 ...

  4. 项目记录 -- python调用回调函数

    C源文件: static int get_callback(zpool_handle_t *zhp, void *data) { zprop_get_cbdata_t *cbp = (zprop_ge ...

  5. hdu 2680 Choose the best route (dijkstra算法 最短路问题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2680 Choose the best route Time Limit: 2000/1000 MS ( ...

  6. Ubuntu安装pip

    首先打开终端 在终端输入:sudo apt-get install python-pip python-dev build-essential [+] 如果需要在Python3下安装pip,那么在py ...

  7. 嵌入式 uboot引导kernel,kernel引导fs【转】

    转自:http://www.cnblogs.com/lidabo/p/5383934.html#3639633 1.uboot引导kernel: u-boot中有个bootm命令,它可以引导内存中的应 ...

  8. 【Educational Codeforces Round 19】

    这场edu蛮简单的…… 连道数据结构题都没有…… A.随便质因数分解凑一下即可. #include<bits/stdc++.h> #define N 100005 using namesp ...

  9. FineReport——JS二次开发(自定义翻页按钮)

    FR允许自定义工具栏上面的按钮,并提交JS方法: 对于翻页功能,大概有首页,下一页,上一页,最后一页,以及跳转页等功能. 不得不说的是,在HTML页面自定义的按钮如何获取到报表模板,通过FR提供的JS ...

  10. javascript方法--apply()

    今天琢磨了一下apply,以前对这个方法觉得比较懵,今天一琢磨确实觉得挺好玩的. 一开始把MDN的apply文档看了一遍,感觉不是很理解,而且有一些东西也是知道但是比较模糊,所以还是一步一步来,不懂查 ...