这份代码可以作为找割边的模板。割边分割出来的部分是无向图的 边-双连通分量。

平面上2*n+1个点,在同一横坐标上的点之间可以任意两两匹配。同一纵坐标上的点之间也可以。问你对于所有的点i,输出i被移除之后,剩余的点能否完美匹配。

把x坐标当一列点,y坐标当一列点,原本的点当做边,建出来一个二分图。

一个连通块可以完美匹配,当且仅当其中边数为偶数。必须所有连通块的边数都是偶数,整个图才可以完美匹配。

考虑移除一个点,如果它不是割边,那么仅仅会让其所在连通块大小-1。如果其是割边,那么将其所在连通块分割成了两个连通块。就很容易在dfs的过程中统计答案。

可以做 边-双连通分量 缩点。

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n,K,xs[410000],ys[410000];
int e,first[410000],next[410000],v[410000],id[410000];
void AddEdge(int U,int V,int ID){
v[e]=V;
id[e]=ID;
next[e]=first[U];
first[U]=e++;
}
bool bridge[410000];
int dep,dfn[410000];
int Tarjan(int U,int te)
{
int lowU=dfn[U]=++dep;
for(int i=first[U];i!=-1;i=next[i])
if(!dfn[v[i]])
{
int lowV=Tarjan(v[i],id[i]);
lowU=min(lowU,lowV);
if(lowV>dfn[U])
bridge[i]=bridge[i^1]=1;
}
else if(id[i]!=te && dfn[v[i]]<dfn[U])
lowU=min(lowU,dfn[v[i]]);
return lowU;
}
bool vis[410000];
int cmp[410000];
bool anss[210000];
int siz[410000],cmp_sz[410000],siz2[410000];
void dfs(int U){
vis[U]=1;
cmp[U]=K;
for(int i=first[U];i!=-1;i=next[i]){
if(!vis[v[i]] && !bridge[i]){
dfs(v[i]);
}
}
}
int nows[410000];
void df1(int U){
vis[U]=1;
for(int i=first[U];i!=-1;i=next[i]){
++nows[K];
if(!vis[v[i]]){
df1(v[i]);
}
}
}
int jis;
void df2(int U){
vis[U]=1;
for(int i=first[U];i!=-1;i=next[i]){
if(!bridge[i]){
if(jis==1 && (nows[K]&1)){
anss[id[i]]=1;
}
}
if(!vis[v[i]]){
df2(v[i]);
}
}
}
void df3(int U){
vis[U]=1;
siz[U]=cmp_sz[U];
siz2[U]=1;
for(int i=first[U];i!=-1;i=next[i]){
if(!vis[v[i]]){
df3(v[i]);
siz[U]+=siz[v[i]];
siz2[U]+=siz2[v[i]];
}
}
}
void df4(int root,int U){
vis[U]=1;
for(int i=first[U];i!=-1;i=next[i]){
if(!vis[v[i]]){
if(jis==1 && (siz2[root]-1+siz[root])%2==1 &&
(siz2[v[i]]-1+siz[v[i]])%2==0 &&
(siz2[root]-siz2[v[i]]-1+siz[root]-siz[v[i]])%2==0){
anss[id[i]]=1;
}
df4(root,v[i]);
}
}
}
void df5(int U){
vis[U]=1;
for(int i=first[U];i!=-1;i=next[i]){
if(cmp[U]==cmp[v[i]]){
++cmp_sz[cmp[U]];
}
if(!vis[v[i]] && cmp[U]==cmp[v[i]]){
df5(v[i]);
}
}
}
int main(){
// freopen("b.in","r",stdin);
scanf("%d",&n);
n=n*2+1;
// n=n;
memset(first,-1,sizeof(first));
for(int i=1;i<=n;++i){
scanf("%d%d",&xs[i],&ys[i]);
AddEdge(xs[i],ys[i]+n,i);
AddEdge(ys[i]+n,xs[i],i);
}
for(int i=1;i<=n*2;++i){
if(!dfn[i]){
Tarjan(i,-1);
}
}
for(int i=1;i<=2*n;++i){
if(!vis[i]){
++K;
df1(i);
nows[K]>>=1;
if(nows[K]&1){
++jis;
}
}
}
K=0;
memset(vis,0,sizeof(vis));
for(int i=1;i<=2*n;++i){
if(!vis[i]){
++K;
df2(i);
}
}
K=0;
memset(vis,0,sizeof(vis));
for(int i=1;i<=n*2;++i){
if(!vis[i]){
++K;
dfs(i);
}
}
memset(vis,0,sizeof(vis));
for(int i=1;i<=n*2;++i){
if(!vis[i]){
df5(i);
cmp_sz[cmp[i]]>>=1;
}
}
e=0;
memset(first,-1,sizeof(first));
for(int i=1;i<=n;++i){
if(cmp[xs[i]]!=cmp[ys[i]+n]){
AddEdge(cmp[xs[i]],cmp[ys[i]+n],i);
AddEdge(cmp[ys[i]+n],cmp[xs[i]],i);
}
}
jis=0;
memset(vis,0,sizeof(vis));
for(int i=1;i<=K;++i){
if(!vis[i]){
df3(i);
if((siz2[i]-1+siz[i])&1){
++jis;
}
}
}
memset(vis,0,sizeof(vis));
for(int i=1;i<=K;++i){
if(!vis[i]){
df4(i,i);
}
}
for(int i=1;i<=n;++i){
puts(anss[i] ? "OK" : "NG");
}
return 0;
}

【Tarjan算法】【DFS】Petrozavodsk Summer Training Camp 2016 Day 9: AtCoder Japanese Problems Selection, Thursday, September 1, 2016 Problem B. Point Pairs的更多相关文章

  1. 【博弈论】【SG函数】【线段树】Petrozavodsk Summer Training Camp 2016 Day 9: AtCoder Japanese Problems Selection, Thursday, September 1, 2016 Problem H. Cups and Beans

    一开始有n个杯子,每个杯子里有一些豆子,两个人轮流操作,每次只能将一个豆子移动到其所在杯子之前的某个杯子里,不过可以移动到的范围只有一段区间.问你是否先手必胜. 一个杯子里的豆子全都等价的,因为sg函 ...

  2. 【推导】【数学期望】【冒泡排序】Petrozavodsk Winter Training Camp 2018 Day 5: Grand Prix of Korea, Sunday, February 4, 2018 Problem C. Earthquake

    题意:两地之间有n条不相交路径,第i条路径由a[i]座桥组成,每座桥有一个损坏概率,让你确定一个对所有桥的检测顺序,使得检测所需的总期望次数最小. 首先,显然检测的时候,是一条路径一条路径地检测,跳跃 ...

  3. 【线段树】【扫描线】Petrozavodsk Winter Training Camp 2018 Day 5: Grand Prix of Korea, Sunday, February 4, 2018 Problem A. Donut

    题意:平面上n个点,每个点带有一个或正或负的权值,让你在平面上放一个内边长为2l,外边长为2r的正方形框,问你最大能圈出来的权值和是多少? 容易推出,能框到每个点的 框中心 的范围也是一个以该点为中心 ...

  4. 2015-2016 Petrozavodsk Winter Training Camp, Nizhny Novgorod SU Contest (5/9)

    2015-2016 Petrozavodsk Winter Training Camp, Nizhny Novgorod SU Contest B. Forcefield 题意 给你一维平面上n个镜子 ...

  5. 2014-2015 Petrozavodsk Winter Training Camp, Contest.58 (Makoto rng_58 Soejima contest)

    2014-2015 Petrozavodsk Winter Training Camp, Contest.58 (Makoto rng_58 Soejima contest) Problem A. M ...

  6. 2015 UESTC Winter Training #7【2010-2011 Petrozavodsk Winter Training Camp, Saratov State U Contest】

    2015 UESTC Winter Training #7 2010-2011 Petrozavodsk Winter Training Camp, Saratov State U Contest 据 ...

  7. Petrozavodsk Summer Training Camp 2017 Day 9

    Petrozavodsk Summer Training Camp 2017 Day 9 Problem A. Building 题目描述:给出一棵树,在树上取出一条简单路径,使得该路径的最长上升子序 ...

  8. Petrozavodsk Summer Training Camp 2017

    Petrozavodsk Summer Training Camp 2017 Problem A. Connectivity 题目描述:有\(n\)个点,现不断地加边.每条边有一种颜色,如果一个点对\ ...

  9. Petrozavodsk Winter Training Camp 2018

    Petrozavodsk Winter Training Camp 2018 Problem A. Mines 题目描述:有\(n\)个炸弹放在\(x\)轴上,第\(i\)个位置为\(p_i\),爆炸 ...

随机推荐

  1. HDU 1284 钱币兑换问题 (dp)

    题目链接 Problem Description 在一个国家仅有1分,2分,3分硬币,将钱N兑换成硬币有很多种兑法.请你编程序计算出共有多少种兑法.   Input 每行只有一个正整数N,N小于327 ...

  2. Bower A package manager for the web

    Bower can manage components that contain HTML, CSS, JavaScript, fonts or even image files. Bower doe ...

  3. eureka服务端

    服务注册与发现——Eureka Eureka Server:服务的注册中心,负责维护注册的服务列表. Service Provider:服务提供方,作为一个Eureka Client,向Eureka ...

  4. ie8下input文字偏上select文字偏下

    1.ie8下input文字偏上 正常情况下input的显示情况如下 当设置input的高度时,就会出现文字不垂直居中偏上的情况,如图 解决方案 强input的行高line-height与其高度设置一致 ...

  5. 測試 battery capacity curve 的負載

    昨天有同事問說, 他要測試 battery capacity curve, 並且負載要使用 33mA, 於是我想到有一個 apk 名稱為 快速放電 (最下方),可以控制 cpu 的 load, 他試了 ...

  6. sicily 1012. Stacking Cylinders & 1206. Stacking Cylinders

    Time Limit: 1sec    Memory Limit:32MB  Description Cylinders (e.g. oil drums) (of radius 1 foot) are ...

  7. bzoj 1798 维护序列seq

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1798 题解: 高级一点的线段树,加上了区间乘法运算,则需要增加一个数组mulv记录乘的因数 ...

  8. C++中多线程与Singleton的那些事儿

    前言 前段时间在网上看到了个的面试题,大概意思是如何在不使用锁和C++11的情况下,用C++实现线程安全的Singleton. 看到这个题目后,第一个想法就是用Scott Meyer在<Effe ...

  9. 构造函数、原型对象prototype、实例、隐式原型__proto__的理解

    (欢迎一起探讨,如果有什么地方写的不准确或是不正确也欢迎大家指出来~) PS: 内容中的__proto__可能会被markdown语法导致显示为proto. 建议将构造函数中的方法都定义到构造函数的原 ...

  10. [New learn]AutoLayout调查基于IB

    代码:https://github.com/xufeng79x/AutoLayout-IB 1.简介 Autolayout旨在解决不同高宽度的屏幕下的显示问题,通过增加给控件增加约束来达到不同屏幕间的 ...