题面

题解

因为强制在线,所以我们不能$cdq$分治,所以考虑用$KDT$,$KDT$维护一个矩阵,然后询问的时候如果当前矩形在询问区间内,直接记贡献,否则判断当前点是否在矩阵内,然后左右分别递归下去判断就行了。

#include <cstdio>
#include <cstring>
#include <algorithm>
using std::min; using std::max;
using std::nth_element;
typedef long long ll; template<typename T>
void read(T &x) {
int flag = 1; x = 0; char ch = getchar();
while(ch < '0' || ch > '9') { if(ch == '-') flag = -flag; ch = getchar(); }
while(ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); x *= flag;
} const int N = 200005;
int n, x1, x2, y1, y2, k, ans, rt, WD, top, cnt, rub[N];
struct poi { int x[2], w; } p[N];
struct node { int mi[2], mx[2], sum, lc, rc, siz; poi tp; } t[N];
int operator < (const poi &a, const poi &b) { return a.x[WD] < b.x[WD]; }
inline int newnode() { if(top) return rub[top--]; else return ++cnt; }
void up(int k) {
int l = t[k].lc, r = t[k].rc;
for(int i = 0; i < 2; ++i) {
t[k].mi[i] = t[k].mx[i] = t[k].tp.x[i];
if(l) t[k].mi[i] = min(t[k].mi[i], t[l].mi[i]), t[k].mx[i] = max(t[k].mx[i], t[l].mx[i]);
if(r) t[k].mi[i] = min(t[k].mi[i], t[r].mi[i]), t[k].mx[i] = max(t[k].mx[i], t[r].mx[i]);
}
t[k].sum = t[l].sum + t[r].sum + t[k].tp.w, t[k].siz = t[l].siz + t[r].siz + 1;
}
int build(int l, int r, int wd) {
if(l > r) return 0;
int mid = (l + r) >> 1, k = newnode();
WD = wd, nth_element(p + l, p + mid, p + r + 1), t[k].tp = p[mid];
t[k].lc = build(l, mid - 1, wd ^ 1), t[k].rc = build(mid + 1, r, wd ^ 1);
up(k); return k;
}
void pia(int k, int num) {
if(t[k].lc) pia(t[k].lc, num);
p[t[t[k].lc].siz + num + 1] = t[k].tp, rub[++top] = k;
if(t[k].rc) pia(t[k].rc, num + t[t[k].lc].siz + 1);
}
void check(int &k, int wd) {
if(0.75 * t[k].siz < t[t[k].lc].siz || 0.75 * t[k].siz < t[t[k].rc].siz)
pia(k, 0), k = build(1, t[k].siz, wd);
}
void insert(int &k, poi tmp, int wd) {
if(!k) { k = newnode(), t[k].lc = t[k].rc = 0, t[k].tp = tmp, up(k); return ; }
if(tmp.x[wd] <= t[k].tp.x[wd]) insert(t[k].lc, tmp, wd ^ 1);
else insert(t[k].rc, tmp, wd ^ 1);
up(k), check(k, wd);
}
int in(int x1,int y1,int x2,int y2,int X1,int Y1,int X2,int Y2) { return (X1>=x1&&X2<=x2&&Y1>=y1&&Y2<=y2); }
int out(int x1,int y1,int x2,int y2,int X1,int Y1,int X2,int Y2) { return (x1>X2||x2<X1||y1>Y2||y2<Y1); }
int query(int k, int x1, int y1, int x2 ,int y2) {
if(!k) return 0;
int ret = 0;
if(in(x1, y1, x2, y2, t[k].mi[0], t[k].mi[1], t[k].mx[0], t[k].mx[1])) return t[k].sum;
if(out(x1, y1, x2, y2, t[k].mi[0], t[k].mi[1], t[k].mx[0], t[k].mx[1])) return 0;
if(in(x1, y1, x2, y2, t[k].tp.x[0], t[k].tp.x[1], t[k].tp.x[0], t[k].tp.x[1])) ret += t[k].tp.w;
return ret + query(t[k].lc, x1, y1, x2, y2) + query(t[k].rc, x1, y1, x2, y2);
} int main () {
read(n);
while(true) {
int opt; read(opt);
if(opt == 3) break;
else {
read(x1), read(y1), x1 ^= ans, y1 ^= ans;
if(opt == 1) read(k), insert(rt, (poi){x1, y1, k ^ ans}, 0);
else {
read(x2), read(y2), x2 ^= ans, y2 ^= ans;
ans = query(rt, x1, y1, x2, y2), printf("%d\n", ans);
}
}
}
return 0;
}

Luogu P4148 简单题(K-D Tree)的更多相关文章

  1. luogu P4148 简单题

    传送门 这题真简单,直接把\(CDQ\)给ban掉了 其实数据范围比较小可以直接二维树状数组,我们看数据范围,发现点的个数比N还小,可以考虑用一些奇怪的数据结构 说的就是你,\(KD tree\) \ ...

  2. 洛谷 P4148 简单题 解题报告

    P4148 简单题 题意 维护单点加与矩形求和,强制在线 说明 \(n\le 500000,m\le 200000\),\(4000ms / 20MB\) kd-tree 复杂度我不懂 是一颗平衡树, ...

  3. 洛谷 P4148 简单题 KD-Tree 模板题

    Code: //洛谷 P4148 简单题 KD-Tree 模板题 #include <cstdio> #include <algorithm> #include <cst ...

  4. 简单题(K-D Tree)

    简单题不简单-- 我们把单点加操作改成插入一个权值为增加量的点,将问题转化成询问一个矩阵中所有点的和,用 \(K-D\ Tree\) 维护,时间复杂度 \(O(n\sqrt{n})\) \(Code\ ...

  5. P4148 简单题 k-d tree

    思路:\(k-d\ tree\) 提交:2次 错因:整棵树重构时的严重错误:没有维护父子关系(之前写的是假重构所以没有维护父子关系) 题解: 遇到一个新的点就插进去,如果之前出现过就把权值加上. 代码 ...

  6. P4148 简单题(KDTree)

    传送门 KDTree 修改权值当做插入节点,不平衡就暴力重构,询问的时候判断当前节点代表的矩形是否在询问的矩形的,是的话返回答案,相离返回0,否则的话判断当前点是否在矩形内,然后继续递归下去 //mi ...

  7. BZOJ4066:简单题(K-D Tree)

    Description 你有一个N*N的棋盘,每个格子内有一个整数,初始时的时候全部为0,现在需要维护两种操作:   命令 参数限制 内容 1 x y A 1<=x,y<=N,A是正整数 ...

  8. acm.njupt 1001-1026 简单题

    点击可展开上面目录 Acm.njupt 1001-1026简单题 第一页许多是简单题,每题拿出来说说,没有必要,也说不了什么. 直接贴上AC的代码.初学者一题题做,看看别人的AC代码,寻找自己的问题. ...

  9. [BZOJ 3110] [luogu 3332] [ZJOI 2013]k大数查询(权值线段树套线段树)

    [BZOJ 3110] [luogu 3332] [ZJOI 2013]k大数查询(权值线段树套线段树) 题面 原题面有点歧义,不过从样例可以看出来真正的意思 有n个位置,每个位置可以看做一个集合. ...

随机推荐

  1. 2015/9/3 Python密码输入屏蔽字符

    在使用Python的过程中,想输入账号和密码,但是密码会随着输入显示在屏幕上,为了解决这个问题需要用到msvcrt模块 这里是使用代码 import msvcrt, sys def pwd_input ...

  2. Windows、Linux及Mac查看端口和杀死进程

    本文介绍如何在Windows.Linux及Mac下查看端口和杀死进程. Windows下查看端口和杀死进程 查看占用端口号的进程号:netstat –ano | findstr "指定端口号 ...

  3. WPF 添加Adminstrator 权限

    在WPF应用开发中,需要WPF操作后台注册的Windows Service,可是WIX打包的安装程序不具备赋予WPF App默认管理员权限. 因此,需要我们手工在WPF项目中添加管理员权限: 1.右击 ...

  4. 多线程---iOS-Apple苹果官方文档翻译

    本系列所有开发文档翻译链接地址:iOS7开发-Apple苹果iPhone开发Xcode官方文档翻译PDF下载地址(2013年12月29日更新版)   多线程  技术博客http://www.cnblo ...

  5. charles https抓包

    1. 配置 Charles 根证书 首先打开 Charles: Charles 启动界面 主界面 然后如下图操作:   之后会弹出钥匙串,如果不弹出,请自行打开钥匙串,如下图: 钥匙串 系统默认是不信 ...

  6. base--AuditResult

    //参考base-4.0.2.jar public class AuditResult implements TimeReferable, Serializable //参考api-1.0.0.jar ...

  7. 【转】debian下的update-rc.d的使用

    在Linux系统下,一个Services的启动.停止以及重启通常是通过/etc/init.d目录下的脚本来控制的.然而,在启动或改变运行级别时, 是在/etc/rcX.d中来搜索脚本.其中X是运行级别 ...

  8. linux驱动基础系列--Linux 串口、usb转串口驱动分析

    前言 主要是想对Linux 串口.usb转串口驱动框架有一个整体的把控,因此会忽略某些细节,同时里面涉及到的一些驱动基础,比如字符设备驱动.平台驱动等也不进行详细说明原理.如果有任何错误地方,请指出, ...

  9. 安装openssl-0.9.8报错out range of signed 32bit displacement .

    安装openssl-0.9.8报错out range of signed 32bit displacement http://blog.csdn.net/wangtingyao1990/article ...

  10. Filecoin:一种去中心化的存储网络(二)

    开始初步了解学习Filecoin,如下是看白皮书的内容整理. 参考: 白皮书中文版 http://chainx.org/paper/index/index/id/13.html 白皮书英文版 http ...